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I Executive Summary 

The science objectives for modern, deep-space missions, and the anticipated goals for these 

missions in the near future, are driving new requirements for spacecraft fault management. 

Traditional safing approaches, however, might be insufficient or inappropriate for certain critical 

events. In these cases, onboard resources and control logic must be used to manage fault events. 

We define Fault Management (FM) as the ability of a system to detect, isolate, and mitigate 

events that impact, or have the potential to impact, nominal mission operations. Note that this 

capability might be distributed across flight and ground subsystems, impacting hardware, 

software, and mission operations designs. 

Fault Management is a critical aspect of deep-space missions; recent experiences, however, have 

highlighted a need to provide a focused assessment of the current state of practice in this area. In 

particular, the NASA Science Mission Directorate (SMD), Planetary Science Division (PSD), 

has experienced a number of technical and programmatic issues related to FM on recent 

missions. As a result, SMD/PSD commissioned an invited workshop with participants from the 

government, industry, and academia to: 

• Assess the state of the art in both practice and research. 

• Identify current and potential issues. 

• Make recommendations for addressing those issues. 

The workshop was held April 14 - 16, 2008, and was attended by one hundred engineers, 

program managers, and researchers. Also, in preparation for the workshop, the workshop 

organizers conducted a detailed survey of FM practices in the SMD/PSD spacecraft development 

community. This white paper describes the objectives and conclusions of the workshop and 

survey, laying out a roadmap for both near- and long-term actions that could be taken to address 

SMD/PSD concerns. 

The workshop was structured into multiple sessions that included formal presentations of current 

mission experiences and relevant research. In addition, a significant amount of time was spent in 

three focused discussion sessions that addressed particular aspects of the FM problem. 

Specifically: 

• FM Architectures. 

• FM Verification and Validation (V&V). 

• FM Development Practices, Processes, and Tools.  

The results from each of these sessions were presented in terms of “lessons learned,” “best 

practices,” and “opportunities for investment.” In this white paper, we have combined the results 

from these three sessions with FM survey responses and information from the presentations of 

current mission experiences to create a single set of top-level findings and recommendations. 

The top-level findings and recommendations from the workshop are presented in Table 1. 
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Table 1. Top-level findings and recommendations from the  
spacecraft fault management workshop 

# Finding Recommendation 

a) Allocate FM resources and staffing early, with appropriate 
schedule, resource scoping, allocation, and prioritizing. 
Schedule V&V time to capitalize on learning opportunity. 

b) Establish Hardware / software / “sequences” /operations 
function allocations within an architecture early to minimize 
downstream testing complexity. 

1 

Unexpected cost and schedule growth during final 
system integration and test are a result of 
underestimated Verification and Validation (V&V) 
complexity combined with late resource availability and 
staffing. 

c) Engrain FM into the system architecture. FM should be 
“dyed into design” rather than “painted on.” 

a) Establish clear roles and responsibilities for FM 
engineering. 

2 

Responsibility for FM currently is diffused throughout 
multiple organizations; unclear ownership leads to 
gaps, overlap and inconsistencies in FM design, 
implementation and validation. 

b) Establish a process to train personnel to be FM engineers 
and establish or foster dedicated education programs in 
FM. 

3 
There is a lack of standard terminology of FM systems 
that causes problems in reviews and discussions. 

Standardize FM terminology to avoid confusion and to provide a 
common vocabulary that can be used to design, implement and 
review FM systems.  

a) Identify representation techniques to improve the design, 
implementation and review of FM systems. 4 

There is insufficient formality in the documentation of 
FM designs and architectures, as well as a lack of 
principles to guide the processes. b) Establish a set of design guidelines to aid in FM design. 

a) Identify FM as a standard element of the system 
development process (e.g., separate WBS) to promote 
innovative solutions and realistic estimates of complexity, 
cost, schedule.  

5 
Metrics have not been established to evaluate the 
appropriateness or measure the lifecycle progress of 
FM systems. b) Establish metrics and process specification with milestones 

that will allow proposal evaluators and project teams to 
assess the relevance, merits and progress of a particular 
FM approach.  

a) Design for testability: Architectures should enable post-
launch and post-test diagnosis. 

b) Examine all observed unexpected behavior. 

c) Implement continuous process improvement for FM 
lifecycle. 6 

a) Practices, processes, and tools for FM have not 
kept pace with the increasing complexity of 
mission requirements and with more capable 
spacecraft systems. 

b) Indications of potential spacecraft anomalies exist 
in test data, but are not always observed or not 
adjudicated. 

d) Catalog and integrate existing FM analysis and 
development tools, to identify capability gaps in the current 
generation of tools, and to facilitate technology 
development to address these gaps. 

7 
The impact of mission-level requirements on FM 
complexity and V&V is not fully recognized. 

Review and understand the impacts of mission-level 
requirements on FM complexity. FM designers should not suffer 
in silence, but should assess and elevate impacts to the 
appropriate levels of management. 

8 

a) FM architectures often contain complexity beyond 
what is defined by project specific definitions of 
faults and required fault tolerance. 

b) Increased FM architecture complexity leads to 
increased challenges during I&T and mission 
operations. 

Assess the appropriateness of the FM architecture with respect 
to the scale and complexity of the mission, and the scope of the 
autonomy functions to be implemented within the architecture.  
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# Finding Recommendation 

9 
FM architecture development is subject to changing 
priorities toward cost and risk over the course of 
system development. 

Define and establish risk tolerance as a mission-level 
requirement.  

10 

a) The bulk of existing FM systems (e.g., mission-
specific monitors and responses) is not inheritable. 
Heritage, similarity and inheritance assumptions 
tend to underestimate budgeting for necessary 
V&V activities and review milestones.b) Current 
FM architectures do not support significant re-use. 

Examine claims of FM inheritance during proposal evaluation 
phase to assess the impacts of mission differences. 

11 
Inadequate testbed resources is a significant schedule 
driver during V&V.  

Develop high-fidelity simulations and hardware testbeds to 
comprehensively exercise the FM system prior to spacecraft-
level testing. 

12 

Organizations have different and sometimes conflicting 
institutional goals and risk postures that drive designs, 
architectures and V&V plans in different directions, 
causing friction between customers and contractors. 

Collect and coordinate FM assumptions, drivers, and 
implementation decisions into a single location that is available 
across NASA, APL and industry. Utilize this information to 
establish / foster dedicated education programs in FM. 

 

In synthesizing these findings and associated recommendations into a unified roadmap for 

NASA SMD, we established three general areas of focus: standardization (e.g., terminology and 

process), technology/tools, and training/education. In order to address the challenges of next 

generation FM, it will be important for NASA to address all of these factors. Note, however, that 

some particular areas should be prioritized for the near term on the basis of their potential for 

maximum benefit at minimal cost. Using the results of the workshop, we have sketched out a 

timeline of recommendations that describes priorities and dependencies in FM advancement over 

the next several years and identifies maturation paths for the three focus areas.  

NASA management can address some of the recommendations directly, for example, setting up a 

WBS for FM that can be used to facilitate estimating and tracking FM efforts.  Other 

recommendations are more complex, and will require the investment of resources to further 

analyze issues and develop best practices, including tools and processes, and to capture these 

practices in training materials and handbooks.  To this end, our highest priority is to establish a 

forum, possibly a working group, through which the issues uncovered in the workshop can 

continue to be addressed.  In the near term, we recommend the working group focus on the 

following issues: 

• Standardize FM terminology and identify FM representation techniques, 

• Establish FM metrics and develop an FM architectures trade space, 

• Establish cost/risk estimation techniques. 

Although more work and discussion are required to achieve consensus in the FM community, the 

most significant contribution of the workshop and associated activities is the recognition of Fault 

Management as a critical, distinct element of the spacecraft engineering process and the strong 

will within NASA SMD to advance spacecraft FM as an engineering discipline. 
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II Introduction 

This white paper documents the findings and recommendations from the NASA SMD/PSD Fault 

Management Workshop held in New Orleans on April 14 - 16, 2008. This white paper provides 

the reader with the background necessary to understand the issues identified at the workshop, 

and documents lessons learned and best practices to assist future NASA planetary missions when 

planning, architecting, designing, implementing, and testing the Fault Management (FM) 

capabilities of a deep-space system. The scope of this paper covers the motivation for the 

workshop, the activities and events that took place during the workshop, the lessons and 

practices that were captured, and the resulting recommendations that emerged from the 

workshop. The target audience for this white paper includes current and future FM practitioners, 

proposal evaluators, and program/project managers. 

A. Motivation 

In recent years, a number of planetary missions have shown an increase in FM issues during 

integration and test (I&T) and flight operations, along with associated schedule impacts and 

lifecycle cost increases. Some of the issues noted include: 

• Changes to the FM design late in the life-cycle, often resulting in a ripple-effect of 

additional changes in other areas. 

• Inadequate understanding of system-level FM testing. 

• Inadequate estimation of system-level FM testing. 

• Unexpected results during FM testing requiring additional time for resolution. 

• Operational limitations or restrictions placed on the spacecraft based on how the system 

was tested (in order to “fly-as-you-test”). 

These issues appeared and were recognized during reviews in almost every mission sponsored by 

the Planetary Science Division (PSD) of NASA’s Science Mission Directorate (SMD). The 

issues appeared regardless of the organizations involved and occurred in both in-house NASA-

developed missions and contractor-developed missions. The resulting schedule impacts 

jeopardized the mission’s readiness for launch, which often is a very hard deadline for planetary 

missions (different launch windows often have severe ramifications to the outcome of the 

mission). The resulting cost overruns impact NASA’s ability to fund other missions. 

Because of the pervasive nature of these issues, the Deputy Director of the PSD and the Chief 

Engineer of the SMD recognized that there were likely systemic problem(s) that could be found 

to be the root cause(s). They also recognized that the problem(s) could be technical and/or 

process oriented. To begin to address these issues, the Deputy Director of the PSD assembled a 

Steering Committee consisting of representatives from GSFC, MSFC, JPL, and APL, and 

directed the Chief Engineer of the Discovery and New Frontiers Program Office to plan and 

implement a Fault Management Workshop. The direction given was to improve predictability 

and manageability in the design, test, and operation of planetary spacecraft FM systems. The 

workshop would pull together FM subject matter experts from government, industry, and 

academia to discuss their experiences on low-Earth-orbiting and planetary missions and offer 
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their perspective on solving these problems. To achieve a better understanding of the issues, the 

workshop would address questions like the following: 

• How could the FM development and system-level testing processes be more predictable 

from a cost and schedule standpoint? 

• What are the system-level design or lifecycle process aspects that drive FM changes late 

in the lifecycle? 

• Are different FM approaches more or less susceptible to these issues? 

• Are these issues occurring only on planetary missions or are similar issues happening on 

Earth-orbiters and/or in the human space flight program? 

B. Workshop Goals and Scope 

The goal of the workshop was to document key findings and make recommendations to benefit 

future missions by avoiding the issues expressed in the previous section. By capturing the 

lessons learned from past missions through an honest and open exchange and documenting best 

practices that have been used across these missions, the intent was to help current and future 

mission developers minimize FM design and testing issues and, thereby, control schedule 

overruns and cost impacts. The approach taken in organizing the workshop was to assemble key 

players in the spacecraft FM field across NASA, industry, and other organizations to: 

• Capture the current state of FM. 

• Expose the challenges associated with engineering and operating FM systems. 

• Identify and describe the issues underlying these challenges. 

• Discuss and document best practices and lessons learned in FM. 

• Explore promising state-of-the-art technology and methodology solutions to identify 

potential investment targets. 

The programmatic scope of the workshop focused on deep-space and planetary robotic missions 

since the observed challenges had all occurred on missions of this nature. However, workshop 

participants recognized that Earth-orbiting (EO) missions also suffered from similar symptoms, 

although perhaps to a lesser degree, and that there was sufficient overlap in FM architectures and 

V&V methodologies to warrant strong representation and participation from the EO community. 

The scope specifically did not include human-rated missions with the acknowledgement that 

these missions involved additional FM challenges that typically are not encountered on purely 

robotic missions. However, members of the human spaceflight community did attend with the 

goal of understanding the issues uncovered during the workshop and absorbing lessons learned 

and best practices that are relevant to their missions. 

The technical scope of the workshop focused on the portion of the spacecraft that handles faults. 

For the purpose of the workshop and this white paper, we define Spacecraft Fault Management 

using NASA’s Preferred Reliability Practices definition for Fault Protection: 

Fault Management (i.e., Fault Protection) = “Fault protection is the use of cooperative 

design of flight and ground elements (including hardware, software, procedures, etc.) to 

detect and respond to perceived spacecraft faults.”   (NASA NO.PD-EC-1243). 
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Spacecraft Fault Management (FM) is a critical aspect of deep-space missions. It provides the 

capability for the spacecraft to detect, isolate, and mitigate events that impact, or have the 

potential to impact, nominal mission operations. This capability might be distributed across flight 

and ground subsystems, impacting hardware, software, and mission operations designs. Fault 

Management often is identified using different terms, such as Fault Protection, Redundancy 

Management, Health Management, Fault Detection/Isolation/Recovery (FDIR), and Safing. In 

this white paper, we use the term Fault Management to capture and represent all of these terms 

and uses. 

C. Workshop Activities 

The NASA SMD/PSD Fault Management Workshop was held over 3 days (April 14 - 16, 2008) 

in New Orleans, Louisiana. Although the number of participants at the workshop was originally 

targeted for 50 - 60 attendees to promote an interactive environment, interest grew and, as a 

result, the final registration far exceeded the initial estimate: a total of 100 representatives from 

31 organizations across government, industry, and academia (see Table 2). The attendees 

brought expertise derived from a wide spectrum of missions, in terms of operations, duration and 

size, and functional roles. 

Table 2. Participants and Missions represented at the SMD/PSD FM Workshop 

Institutions 

NASA Ames Research Center, Goddard Space Flight Center, Headquarters, Jet Propulsion Laboratory, Johns 
Hopkins University/Applied Physics Laboratory, Johnson Space Center, Marshal Space Flight Center, NASA 
Research and Education Support Services, Stennis Space Center 

Other 
Government 

Air Force Research Laboratory, Defense Advanced Research Projects Agency, Naval Research Laboratory 

Academia Carnegie Mellon University, Iowa State University, Massachusetts Institute of Technology, SRI 

Industry The Aerospace Corporation, AI Signal Research Inc., Ball Aerospace & Technologies Corporation, Bastion 
Technologies, The Boeing Company, Computer Sciences Corporation, Draper Laboratory, General Atomics, 
Inspace Systems, Interface & Control Systems, Lockheed-Martin, L-3 Communications, Northrop Grumman 
Space Technology, Orbital Sciences Corporation, Research Institute for Advanced Computer Science, Space 
Systems Integration, Universities Space Research Association 

Missions 

Low Earth 
Orbit 

Global Precipitation Measurement, Hubble Space Telescope, TacSat, Tropical Rainfall Measuring Mission 

Deep-Space 
Missions 

Cassini, Dawn, Deep Impact, James Webb Space Telescope, Mars Reconnaissance Orbiter, Mars Exploration 
Rover, MESSENGER, New Horizons, STEREO 

Other Chandra X-ray Observatory, Constellation (Ares, Orion, Altair), Solar Dynamics Observatory  

Functional Roles 

Engineers Software reliability, spacecraft systems, software, technical supervisors, computer scientists, fault protection, 
avionics, project chief, system health management, fault management, control systems, systems and software 
chief, sustaining engineering 

Managers Program managers, V&V managers, flight system managers, section heads, group supervisors, division chief 
engineers, program integration managers, directors Academia Program director, professors 

All attendees were expected to contribute to the workshop through presentations, posters, and/or 

active participation in the dialog during the breakout sessions. Participants were asked to identify 

technology issues and process issues that currently are driving unplanned cost growth and 

schedule growth in FM systems for unmanned, autonomous spacecraft. The workshop 

participants also were tasked with capturing best practices to address those issues, as well as 

opportunities for investment to mitigate or possibly even avoid the issues on future missions. The 

workshop was not looking to produce a recipe or a set of standards. Instead, the goal was to rise 

above institutional preferences and evaluate the applicability, strengths, and weaknesses 

associated with different approaches. 
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The workshop was organized around five components: (1) case study presentations, (2) Request 

for Workshop Input (RFWI), (3) targeted roundtable discussions, (4) invited speakers, and (5) 

poster presentations. A detailed description of the workshop format, including the agenda of 

presentations and breakout sessions, is provided in Appendix A. Current FM approaches and 

techniques were collected using the case study presentations and the RFWI responses. Thirteen 

case studies were presented that exposed issues dealing with in-flight anomalies, project FM 

flight experiences, project FM development experiences, and industry FM philosophy and 

approaches, as well as lessons learned from eight current or past missions. Attendees of the 

workshop were requested to provide responses to an RFWI describing the use of FM on projects 

at their institution. Breakout Sessions provided a forum for the targeted roundtable discussions to 

enable the participants to discuss the issues presented in the case studies on the previous day and 

to suggest additional issues that were relevant to the Workshop. The goal of the Breakout 

Sessions was to distill the information to uncover the root causes of the issues. Workshop 

sponsors invited three speakers from academia and one from the NASA community to present a 

different perspective on FM and some insight into future directions. Finally, the poster 

presentations provided an opportunity for the participants to explore emerging technologies and 

to discuss future opportunities for investments to improve fault management for future missions. 

Case study summaries, breakout session descriptions, invited speaker presentations, poster 

session abstracts, and the RFWI inputs are described in Appendices B through F, respectively. 
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III Workshop Results — Findings and Recommendations 

During the Workshop, three key concepts emerged as central themes that are categorized as 

general observations. 

First, the implementation of FM within the software domain is generally similar across NASA, 

Johns Hopkins University/Applied Physics Laboratory (JHU/APL), and industry, and can be 

described at a fundamental level as an “alarm-and-response” system. See “General Observations 

on FM Architectures” in Appendix C for details on the similarities and differences noted 

between the architectures from the participating organizations. In an “alarm-and-response” 

system, the software monitors information from various on-board sensors for conditions that are 

out of specified bounds and responds to violations by sending a sequence of commands designed 

to fix the problem. Low-level differences in software FM architectural implementation do occur, 

in particular in the areas of: 

• How alarms and responses are represented and implemented. 

• Whether alarms and responses are arranged hierarchically or in a flat structure. 

• Whether responses can be single or multi-threaded.  

Each difference represents a trade-off. For example, a multi-threaded approach ensures that the 

highest priority fault is dealt with first; however, it also allows responses to preempt other 

responses, which might lead to unexpected interactions that introduce new challenges when 

testing the system. Overall, the discussions within the groups increased overall understanding 

since participants could see the results of other organizations’ trade-offs and implementations. 

More sharing of this type should be encouraged. 

Second, there was general agreement that FM in current missions was not being limited by 

technology, but rather by a lack of emphasis and discipline in both engineering and 

programmatic dimensions. This is not to say that technology advancements related to FM are not 

indicated. Indeed, it was also generally acknowledged that current-generation technologies and 

approaches, such as rule-based systems, are not expected to scale up to meet the requirements of 

future deep-space missions. However, it is felt that the systems engineering problems of current-

generation programs must be addressed to enable any real technology advancement in this area. 

Third, the in-flight performance of the FM systems on the projects that were represented at the 

workshop was deemed successful. Among the respondents, FM design flaws have not had an 

impact on mission success, though some false trips have resulted in unnecessary Safing events. 

Some of the more complex systems did need a number of configuration changes. Most were 

attributed to deferred testing that uncovered errors during flight, but some reported needing 

updates in response to false trips. 

The following section captures the key findings and recommendations extracted from the case 

study presentations, the RFWI responses, and the breakout session discussions. These findings 

are considered contributing factors to the issues identified in this white paper and introduce 

challenges when evaluating, designing, implementing, and testing FM systems. The 

recommendations were compiled by rolling up and consolidating inputs from all workshop 

participants. These recommendations were captured during the Breakout Sessions and reflect the 



Spacecraft Fault Management Workshop Results 

9 3/27/2009 

diverse thought processes and opinions from the multiple organizations involved in the 

discussions. Authors and presenters were extremely frank when sharing their experiences, with 

the understanding that the sensitive nature of the original materials would be respected. 

Therefore, supporting data have been sanitized to preserve confidentiality. 

FINDING 1 – Unexpected cost and schedule growth during final system integration and 

test are a result of underestimated Verification and Validation (V&V) complexity 

combined with late resource availability and staffing. 

Perhaps the single most significant finding from FM development in recent mission experiences 

is that a lack of FM consideration in early mission phases is at least a partial cause of unplanned 

cost and schedule growth during system development. It is common in developing a project 

schedule to develop the most compact and compressed means to perform the range of functions 

needed to engineer, build, and test the system. Plans for V&V tend to represent a concise and 

fixed schedule that assumes that everything will proceed successfully, accommodating anomalies 

and failures in the V&V process through overall schedule margin. However, the tests, by design, 

should be pushing the system towards failure and seeing how it responds. The system-level I&T 

phase is an opportunity to understand and characterize how the spacecraft as a whole operates. 

Therefore, this critical phase of the spacecraft lifecycle should be a primary focus of resources, 

schedule, and staffing.  Since system-level I&T occurs late in the lifecycle, programs often cut 

corners on one of the most critical engineering activities. 

The most telling evidence that FM is not considered early enough in the design process is the 

large increases between planned labor and actual labor hours in recent missions. One case study, 

shown in Figure 1, gave an example of the FM task being planned for 0.5 Full-Time Equivalent 

(FTE) throughout the mission; in actuality, FM staffing peaked at more than 14 FTEs (during the 

system-level I&T stage). This was a common occurrence: FM is viewed initially as a side 

responsibility of a systems engineer, increases to a full time job as the mission progresses, and 

eventually requires an entire team is to deal with problems, testing, etc. 

 

Figure 1. Planned vs. Actual Profile for FM staffing from a Case Study mission.  

This unplanned “bump” in staffing consistently appeared on numerous missions. 
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This unplanned bump in the staffing profile not only impacts budget, but also introduces 

logistical and efficiency challenges. People cannot start on a program and understand everything 

from the day they begin. Therefore, in these situations, the core team members need to spend 

time not only getting their job done, but also training the new people who are needed to handle 

the much larger workload than was anticipated. 

Recommendation 1a: Allocate FM resources and staffing early, with appropriate schedule, 

resource scoping, allocation, and prioritizing. Schedule V&V time to capitalize on learning 

opportunity. 

As space systems become more complex, it is becoming increasingly important that the process 

of designing the FM system begins in the very early stages of the mission design process; project 

management must also recognize that the FM system might require new architectural 

approaches. FM engineers should be involved during the proposal or initial planning phase.  

Also, a strong FM lead and team need to be supported throughout the program. Ground support 

equipment and personnel must be brought onto the project early enough to accommodate a ramp-

up, training period typically required to be effective on a project. The message that “FM cannot 

be pushed back until the later stages of design” was reiterated throughout many of the case study 

presentations. 

An overall FM strategy should be established early in system development, even as early as Pre-

Phase A, to better understand cost and schedule requirements. This should result in a more 

efficient allocation of development resources later in system development. At a minimum, in the 

absence of a solution to the current staffing “bump” problem, the “bump” in the workforce 

profile must be anticipated and planned for from the initial planning stages. The project schedule 

and budget must include enough personnel and time for test program preparation and execution. 

Allowing no place in the project schedule for finding and fixing anomalies results in cut corners 

during testing. V&V planning should not be overly optimistic in its allocation of time and 

resources. This will help prevent slip in the V&V schedule and neglect of critical aspects of 

V&V. 

FM requirements should be addressed in Pre-Phase A. This should be coupled with a top-level 

“testbed” strategy, also to be developed in Pre-Phase A. By Phase A, a FM plan and a standing 

FM Technical Interchange Meeting should be established. It is also recommended that a 

dedicated FM requirements review should be performed prior to system PDR. This review 

should cover testbed plans and make use of functional analysis and trade space analysis tools. A 

matrix of tool categories and potential/available tools was started during the workshop; an 

excerpt is shown in Table 3. 
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Table 3. Sample Matrix of Tool categories and availability for FM. 

Purpose / explanation Short Description Representation Standard Example Comments 

Fault containment 
impacts controller 
development 

Operating System N/A VxWorks, ARINC 
653, Honeywell, 
SAE standard… 

 

Fault reduction starts 
with good compilers 
(and coding practices) 

Compiler C, C++, Java, Lisp, Haskell, 
ML… 

  

Fault reduction via 
autocoding, sometimes 
directly from 
requirements 

Software autocoder  MatrixX, 
Simulink, 
Labview, 
Autobayes, 
Autofilter… 

MatrixX, Matlab and 
Simulink are high 
TRL; some 
autocoding magnifies 
impact of V&V 
(demonstrated at low 
TRL) 

 

Almost all respondents to the RFWI identified common reviews as key milestones (e.g., 

Preliminary and Critical Design Reviews), but most also reported that additional reviews were 

helpful to address topics of specific interest. Several noted that a review of test capabilities and 

fault test plans was of particular significance to their projects. One respondent indicated that 

extensive changes were made to a project’s test strategy, and test facilities were added in 

response to a review. Another participant opined that, while reviews are valuable, the formality 

of a FM systems review could impact its effectiveness; less formal, tabletop style reviews have 

better results than more formal reviews, where details can be obfuscated during the filtering 

process to generate formal slides. 

V&V is a critical process that cannot be an afterthought for a project simply because it occurs 

late in the development cycle. System-level FM validation cannot be performed until late in the 

development cycle, as the system needs to be reasonably complete before FM systems can be 

fully tested. Moreover, the complexity of many FM systems makes them hard to validate. The 

V&V lead should be assigned during Phase A to question whether the FM design can be tested 

and to examine the design’s complexity. In order to adequately characterize FM behavior, 

extensive testing is important, and review of tests by all of the system and sub-system designers 

is very important. However, the set of possible states and scenarios are too large to exhaustively 

test. Consequently, projects must take a measured approach to validation and must explore 

alternate techniques to complement hardware-in-the-loop testing. 

All projects should have an incompressible test list of fault scenarios. Projects should apply 

protections so that FM scenario testing is not lost in the time crunch. Since FM testing is not 

currently deemed critical in developing a system, and testing typically occurs late in the V&V 

process, it can be tempting to eliminate testing of the range of key FM fault management 

scenarios. For mission assurance, protections should be established to mandate such testing. 

Recommendation 1b: Establish Hardware / software / “sequences” /operations function 

allocations within an architecture early to minimize downstream testing complexity. 

Key to the development of FM architectures is the understanding of the properties of elements 

employed to protect a system. Hardware, software, and operations procedures provide different 
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levels of speed, isolation, reliability and flexibility to the design. The trade-off of what 

mechanism to employ and where to employ it is an important one. Unless this allocation is 

determined early in the project lifecycle, the FM architect will produce less optimal designs 

because implementation is forced into software, then into parameter-based autonomy, and finally 

into operational constraints, depending on how late FM architecture changes are applied. In 

addition, the FM requirements allocated to hardware or hard-coded software can take advantage 

of testing performed at the subsystem or hardware level rather than having all FM testing forced 

into system-level I&T. 

Recommendation 1c: Engrain FM into the system architecture. FM should be “dyed into 

design” rather than “painted on.” 

It is a great benefit to flight projects for an architecture to ingrain itself within the early phases of 

design at the system level. The architecture should be intuitive to system engineers, subsystem 

leads, and operators such that a single design context can be carried from early design through to 

operations. In addition, the system design should be visible in the implementation. 

A good FM architecture flows logically from mission requirements and the fault analysis of the 

system, including fault trees, probabilistic risk assessments, and failure modes and effects 

analyses. Early understanding of scope and a grounding in mission objectives and risks enable 

designers to produce an architecture that is focused on the most critical aspects of the mission or 

elements of the system. Developing the FM architectures from a systems point of view also 

offers the great benefit of reducing complexity of the overall design, since problems can be 

diagnosed with respect to overall system performance. In addition, responses can be developed 

in such a way as to reduce coupling to other elements of the FM architectures, reducing the 

complexity of system test efforts. Viewing the FM problem from a systems point of view also 

enables the design of generic protections that might remedy large classes of faults. 

One of the invited speakers, Professor Brian Williams from MIT, provided insight into a unified 

framework to handle nominal and off-nominal scenarios within a complex system, such as a 

spacecraft. His presentation offered an alternate approach that captures the “dyed into the 

design” concept by integrating the management of faults into the baseline execution and control 

elements. 

FINDING 2 – Responsibility for FM currently is diffused throughout multiple 

organizations; unclear ownership leads to gaps, overlap, and inconsistencies in FM design, 

implementation, and validation. 

Participants have found inefficiencies in their definition of the FM engineering task. The lack of 

a strong process or clear relationships with other project tasks has given rise to a number of 

difficulties throughout the project lifecycle. In particular, a loose relationship with system 

engineering or late involvement of mission assurance in the FM development process has 

resulted in cost and schedule impacts and, in some cases, inadequate design. The lack of a clearly 

defined relationship between Systems Engineering and Safety and Mission Assurance 

organizations is problematic for FM design, implementation, and validation on flight projects. 

Fault management tends to be viewed as a responsibility of system engineering. It is usually 

treated as a unique sub-discipline of system engineering and sometimes as a subsystem itself. Of 

the 11 missions that provided written input, 6 indicated that FM engineering was a responsibility 
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of the project’s systems engineering team; only one reported that FM engineering fell outside of 

systems engineering. (The remaining 4 missions did not provide information on their 

organization.) The design cycle of FM systems tends to follow a process similar to the rest of the 

project. However, the usual milestones frequently lag the rest of the system. For example, four 

respondents indicated that FM milestones follow the corresponding project-level milestones; 

others mentioned an augmentation of the FM review schedule that lagged behind the normal 

project reviews. FM engineering, however, is responsive to the detailed designs of subsystems, 

as failure analyses must be completed on the subsystems in order to complete the FM system 

design. 

In developing the mission fault set, NASA centers tend to use a combination of failure analyses, 

mission assurance analyses, and subsystem engineer interviews. Practitioners in industry more 

commonly use heritage fault sets updated with subsystem interviews to converge on a fault set, 

with some use of failure modes and effects analyses when they are available. In all cases, 

interaction with subsystem engineers and mission assurance is paramount to assessing how a 

system can fail and defining the failure modes against which the system FM design will protect. 

One respondent’s input underscored the importance of a strong systems engineering approach to 

FM design. The project took a loose approach to the definition of its FM system — relying 

heavily on software architecture with no specific fault tolerance requirements, fault set, or 

definition of system behavior — and found that approach resulted in a system with too many 

flaws to be operable. Moreover, a lack of system requirements to verify meant that small flaws 

were discovered late, when testing was more expensive and bug fixes required significant effort. 

The organization has since taken steps to write strong FM requirements, perform detailed failure 

analyses to focus the implementation of FM, and follow a more rigorous test campaign starting at 

the unit level. 

Recommendation 2a: Establish clear roles and responsibilities for FM engineering. 

Clear roles and responsibilities need to be defined between Engineering and Safety and Mission 

Assurance organizations with regard to defining FM scenarios, identifying faults, and 

determining risk levels associated with identified faults. In particular, mission assurance should 

have a larger role in FM design. 

While it is clear that a team responsible for the FM process needs to be put in place early, it is 

not clear what the organizational home of that team should be. Participants were in broad 

agreement that FM design is a system-level problem. However, there was not a consensus on 

whether FM responsibilities should fall to the existing systems engineering team or a separate 

team devoted to FM. Having a large core systems engineering team, without any specific FM 

engineers, means that FM will at times be pushed off for a higher priority systems issue. 

However, this team set-up would also ensure that the engineers designing the FM system would 

be experts in the overall system and could better understand the interactions and needs of the FM 

system. If FM engineering is a separate product team the effort is more focused, but it is 

separated from the design of the overall system, which makes the design process more difficult 

and might produce less robust fault protection. A third option is to keep FM part of system 

engineering, but designate a person or sub-team specifically responsible for FM. In this case, 

there could also be an integrated systems team, consisting of existing members of the systems 

engineering team focused on specific aspects of system design (fault management, flight 
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software, testing, etc.), which meets on a regular basis to ensure that the system is integrating 

correctly. 

One organization stressed that an integrated product team environment can provide a sound 

approach to ensure that a system-level perspective is enforced. System-level interactions can be 

the sources for a significant portion of on-orbit anomalies and failures. The integrated product 

team environment integrates all of the relevant skill sets throughout the project lifecycle. It can 

help ensure that all of the elements are brought together in the process and that component- and 

system-level behavior is properly characterized, tested, and stressed on the ground. 

Ultimately, workshop participants universally agreed that, regardless of where the FM team is 

organizationally located, the team needs to be assembled at an earlier stage and the analysts 

(FMEAs, PRA) and the designers (FM, test engineers) need to have more interaction. Most 

participants agreed that FM engineering should be a system-level position on highly complex 

and/or critical missions. 

Recommendation 2b: Establish a process to train personnel to be FM engineers and establish 

or foster dedicated education programs in FM. 

Lessons learned from one project are easiest to apply to the next project if the personnel are the 

same. The more similar two missions are, the more benefit will be gained by having the same 

personnel (although the risk, of course, is that the architecture becomes stale without the influx 

of new ideas). Though deep-space missions tend to be unique — more so perhaps than “similarly 

repeated” Earth orbiters, even in unique missions — if the FM architectural approaches are 

slowly evolving, instead of being redeveloped from scratch for each mission, there will still be 

some knowledge base and lessons learned captured by using the same personnel on multiple 

missions. This concept could be extended to suggest the development of an evolving “set” of FM 

architectures, with different classes/types of mission requiring different architecture types (e.g., 

surface missions, flagship orbiters, flyby missions, etc.). Along these same lines, a FM process 

should be defined at each organization with team definitions and responsibilities laid out from 

the early planning stages. 

Discussion at the workshop also addressed issues associated with organization and training. 

Rotation of engineering staff through different roles in FM (concept development, system 

development, mission assurance, operations) was cited as beneficial. In some organizations, 

alternation or rotation of staff between proposal and system development resulted in improved 

understanding and assumptions in FM development on subsequent missions. In larger 

enterprises, where dedicated FM organizations have been created, these organizations have 

proven to be good training ground for future mission system engineers. Unfortunately, the 

pipeline for (re-)staffing these organizations is not so clear. 

The current generation of FM engineers typically is drawn from Attitude Control 

Subsystem/Guidance, Navigation and Control (ACS/GNC) or I&T organizations. Anecdotal 

information at the workshop indicated that these engineers are generally forced to learn on the 

job without formal training dedicated to the FM domain. Our recommendation is that NASA 

advocate for the creation of an FM academic/engineering discipline. Initially, this effort might 

focus on the development of training texts and special curricula (perhaps to include related 
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application domains such as plant and automotive engineering). Depending on need, this might 

expand to dedicated FM engineering programs at key universities. 

FINDING 3 – There is a lack of standard terminology of FM systems that causes problems 

in reviews and discussions, particularly when multiple organizations partner on a project. 

Various organizations across NASA, JHU/APL, and industry use different terminology and 

different ways to represent a FM architecture. Terminology differences are so deep that there are 

even significant differences in the definitions of the terms used to describe the prevention and 

treatment of faults: fault management, fault protection, fault avoidance, redundancy 

management, or FDRIR (fault detection, response, isolation, and recovery). Representatives from 

various organizations are at times talking about the same thing and don’t know it, and at other 

times think they’re talking about the same thing and are actually talking about very different 

things. Table 4 provides a sample list of terms that often are used in the FM field, but are not 

universally defined. 

Table 4. List of terms currently having multiple definitions when  
used within the field of Fault Management 

Anomaly Diagnosis Failure 

Fault Fault management Fault protection 

Fault recovery Fault tolerant FDIR 

FDRIR Redundancy management  

 

One specific example of terminology differences across organizations was that there are two 

ways to interpret the term “single fault tolerant,” as follows: 

• In one organization’s definition, a design was able to survive any single fault, and that 

fault could be an operator error, a hardware error, a software error, etc. Any combination 

of those faults was considered beyond single fault and outside the scope of the fault 

management system.  

• A second organization viewed single fault tolerant as any single fault, hardware or 

software, but did not include errors such as operational errors or SEU induced errors, 

which are not considered faults. 

In addition to causing difficulties in fault management design across organizations, terminology 

differences can cause problems within the same organization. At least one major spacecraft 

anomaly was partially caused by multiple organizations using similar terminology, but with 

slightly different definitions. This led to confusion, misunderstandings, and errors in design. This 

anomaly could have been avoided if the terms used in the design had been strictly defined and 

clearly stated to all team members. 
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Recommendation 3: Standardize FM terminology to avoid confusion and to provide a 

common vocabulary that can be used to design, implement, and review FM systems. 

The first step in avoiding miscommunication and confusion during the design process and 

reviews is to create a standard terminology and to establish a well-defined set of metrics for FM 

characterization. Without standard terminology it will be difficult to organize FM into a 

discipline, and to address the other Findings in this white paper. Motivation and, perhaps, 

leadership for such an activity would properly come from NASA Headquarters; however, the 

activity should be performed by a broad spectrum of the community (such as that present at the 

workshop) in order to achieve overall consensus and acceptance. 

Augmenting the recommendation of a common taxonomy (terminology) described above, it was 

felt that individual missions would benefit by creating a tailored version for the particular 

mission.   

FINDING 4 – There is insufficient formality in the documentation of FM designs and 

architectures, as well as a lack of principles to guide the processes. 

While using the same terminology will help communications among team members, another 

communications issue that was brought up several times was an inability to visualize these 

complex systems. Fault management systems have become so complex that visualizing all the 

monitors, responses, and where everything is getting done is becoming very difficult. It is also 

extremely difficult to visualize how a change in the system (monitor, response, or parameter) 

will affect the rest of the system. While visualizing the system is difficult for everyone, it is 

especially difficult for systems engineers who are not software specialists and who, as discussed 

earlier, are often the ones designing and implementing the monitors and responses. 

The lack of visibility and understanding of FM design concepts translates into a lack of 

“reviewability.” In some cases, FM designs are not expressed in a manner that makes them easily 

understood by developers or reviewers. All organizations share an inability to accurately 

describe the design of their FM architecture to system engineers and domain experts outside of 

fault management. In addition, examining the design or implementation of current FM systems 

does not readily reveal the system properties and overall concept of operations of the FM 

architecture. Lack of documentation results in ineffective project reviews and confusion when 

coordinating fault management with other subsystems and with system engineering. An 

important part of this problem is that little effort to date has been devoted to the application of 

rigorous architectural specification techniques and representations, such as those available in the 

broader engineering literature. 

Finally, it was noted that unstructured knowledge transfer is a major FM cost driver. In current 

practice, FM requirements and design are captured at multiple points in the system development 

lifecycle, and transfer of that unstructured knowledge between mission phases can be a major 

cost driver. 

Recommendation 4a: Identify representation techniques to improve the design, 

implementation and review of FM systems. 

High-quality documentation of FM systems design is a boon to projects throughout the project 

lifecycle. A method of appropriately documenting and communicating FM architectures is 

needed to build stronger connections with other system elements and to provide for a better fault 
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management solution by enabling more eyes on the problem. Documentation should address how 

the FM architecture meets institutional and Agency guidelines for fault management systems and 

should show justification for fault management design decisions. The documentation should also 

clearly address the allocation of functionality between hardware, flight software, ground 

software, and operations. Some process or tool that linked FM conceptual design, requirements 

generation/decomposition, design, development, I&T, and operation could result in major 

savings and risk reduction. 

In addition, descriptive visualizations of FM designs are very important to success in all mission 

phases. Flow charts and clear descriptions of expected behaviors help reviewers, testers, and 

operators understand the system design in adequate detail to better fill their roles. Systems 

should be described in accessible terms. It is important to develop and use tools, such as 

diagrams, that help with visualization. When FM designers get too buried in FM- and software-

specific language or representations, documentation becomes inaccessible to other reviewers and 

users. Finally, telemetry visualization tools — tools that show what happened, in what order, and 

what state the telemetry is in (red, yellow, green) — can also help operators to use these complex 

systems more efficiently. 

Recommendation 4b: Establish a set of design guidelines to aid in FM design. 

The case study presentations revealed several design guidelines that apply to all missions across 

the industry: 

• Always provide a safety net, even if a specific fault has not been identified. Even if you 

haven’t identified an exact failure mechanism, you need to design a way for the system to 

fail safe in every situation. Even when failure modes have been identified, the knowledge 

of those failure modes will always be limited and unexpected situations can occur. 

Therefore, it is important to put in mechanisms that will protect the spacecraft from 

known dangerous situations, even if a fault has not been specifically identified that can 

lead to that exact situation. 

• The safing recovery procedure must be properly planned, tested, and practiced for rapid 

execution, if necessary. The safing recovery procedures should include identifying what 

data will be needed to characterize and recover from an unknown fault and must, 

therefore, be recorded and stored. 

• Be careful of the limitations of redundancy. Performance on a backup system could be 

worse than performance on the prime system, even with a minor fault in the prime 

system. In addition, calibrating the backup could cost time and/or other resources. 

Therefore, even when redundant systems are available, it is often preferable to remain on 

a prime system with a minor flaw.  Consequently, autonomous changes to redundant 

systems should be treated with caution. 

While the complexity of future missions is driving the complexity of fault management systems, 

another design guideline that was mentioned several times was to keep the design as simple as 

possible and revert to fundamentals whenever possible. Although a high level of complexity is 

inherent in the FM of deep-space missions, whenever possible, the simplest design is often the 

best. An example was given of a very complex analysis that was finessed to increase science 

return. In the end, the analysis was incorrect and a spacecraft anomaly occurred. Whenever 
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dealing with extremely complex problems, it is a good idea to make simplifying assumptions and 

to not forget the fundamentals of what the design is trying to achieve (see Recommendation #7). 

Note: There was discussion of FM systems handling software failures and the emergence of 

software Failure Modes and Effects Analyses/Fault Tree Analyses (FMEA/FTA) efforts during 

one of the breakout sessions. This is a relatively new area for the aerospace community; although 

not widespread in practice, software FMEA/FTA analyses represent a potentially important 

opportunity to augment current FM design practices. 

FINDING 5 – Metrics have not been established to evaluate the appropriateness or 

measure the lifecycle progress of FM systems. 

Given the lack of standard processes, engineering roles, and terminology for FM, it is no surprise 

that there is a lack of standard metrics for evaluating the appropriateness of different canonical 

FM approaches to specific mission requirements and for tracking progress of FM development, 

test, and integration. In the course of discussions during the workshop, disagreements surfaced 

over the “best” approach to address the problem. Upon further reflection by the participants, it 

became apparent that many of these disagreements stemmed from the assumption that there was 

a single optimal solution to FM requirements across all mission classes when, in fact, the risks, 

constraints, and requirements across these classes implied fundamentally different approaches to 

FM. Our discussions included FM aspects of manned missions, deep-space missions, landed 

missions, and Earth-orbiting missions. 

The only measures identified by workshop participants to describe FM processes and design 

were staffing levels (see Finding 1) and “rule counts” in architectures that support rules. While 

these might serve as rough measures of mission cost and complexity after the fact, there are no 

models for estimating mission cost and complexity on the basis of fundamental requirements or 

design parameters. It is a well-established fact that quantitative, measureable data are required 

not only for estimation purposes, but more fundamentally as a basis for improvement and 

maturation of engineering processes. 

Recommendation 5a: Identify FM as a standard element of the system development process. 

If NASA were to highlight the importance of FM by recognizing it as a separate and distinct 

element of the system development process, competitive forces in both research and 

development domains would produce new processes and technology to address many of the 

issues highlighted in the workshop. This recognition should include highlighting FM in program 

structure (e.g., dedicated Work Breakdown Structure [WBS] elements) and the use of generally 

accepted measures of risk, complexity, and performance. 

One approach to addressing the problems of emphasis and discipline in new development 

programs would be for NASA to make FM engineering an explicit area of evaluation for 

competitive mission proposals. In the current environment, FM is not typically regarded as an 

engineering discipline, distinct from GNC, propulsion, communications, etc. Without this 

visibility, the cost and schedule impact associated with design, development, integration, and test 

of FM can be lost in early program planning, resulting in significant unplanned impacts late in 

the spacecraft development timeline. By emphasizing FM in all phases of the mission lifecycle 

as part of mission concept evaluation, NASA will create an environment where developers are 



Spacecraft Fault Management Workshop Results 

19 3/27/2009 

motivated to produce innovative technical solutions and to correctly estimate the complexity of 

these solutions and the associated cost and schedule impacts. 

Recommendation 5b: Establish metrics that will allow proposal evaluators and project teams 

to assess the relevance, merits, and progress of a particular FM approach. 

A comprehensive suite of FM metrics should encompass risk, complexity, and performance. 

Performance could be further broken down to include “functional” measures, such as diagnostic 

coverage of the fault space, timing responsiveness of the fault responses, and determinism, and 

“non-functional” measures, such as testability, usability, and maintainability. Features that 

promote these properties should be inherent in FM architectures. Performance measures and 

progress metrics need to be specified for the key figures of merit, and reported during reviews 

and at major milestones of FM architecture development. 

In the V&V phase, metrics should be employed in a number of ways. First, it will be critical to 

establish a complexity metric to assess the level of V&V effort needed. As expressed in Finding 

7, the complexity of a system impacts how much resources are needed to perform system-level 

I&T for FM. Second, metrics are needed to measure progress in FM test suites. Not all 

requirements are created equal, and they should not be treated as such. Recommendation #6b 

provides additional suggestions for evaluating test results. 

NASA can establish leadership in the areas recommended in 5a and 5b — namely a FM system 

development process and metrics — by commissioning a standards body composed of 

government, academic, and industry participants to create reference processes and metrics for 

FM. This will create a baseline for both evaluation of alternatives and tracking of progress during 

system development. Table 5 shows an example provided by one of the workshop organizations 

of a product that could come out of this standards body. 

Table 5. Sample FM process specification. 

Mission Phase Focus Tools 

Conceptual Design (Pre-A) • Understand Critical Risks and 

Associated Mitigation Costs 

• Qualitative/Quantitative Risk Analysis 

Preliminary Analysis (A) • Preliminary Quantitative Risk 

Assessment 

• FM Complexity Analysis 

 • Architecture Trades • FM Costing 

 • Cost Estimation  

Definition (B) • Probabilistic Risk Assessment • PRA & FMEA Support 

 • Preliminary FMEA • Test Planning 

 • System & Subsystem Requirements 

Development 

 

 • Testbed Plan  

Design & Development (C/D) • Formal Behavior Specification • Logic Verification 

 • Verification & Validation • Simulation 

 • Operations Training • HIL Testbeds 

Operations (E) • Contingency Response • Telemetry Analysis 

 • Degraded Operations • Plan Generation 

  • Operations Interface 

  • Simulation & Testbeds 
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FINDING 6a – Practices, processes, and tools for FM have not kept pace with the 

increasing complexity of mission requirements and with more capable spacecraft systems. 

Increasing capabilities in processors, sensors, and mechanisms are resulting in significant 

increases in the capabilities available to scientists for current and future missions. In order to 

employ these capabilities, engineers are using increasingly complex designs containing more 

subsystems with increasingly complex interfaces and embedded software. Instruments have 

become much more sophisticated. Vehicles are performing orders of magnitude more functions 

with each successive mission. As the systems become more complex, the number of potential 

fault scenarios for the system grows exponentially. While we put significant focus into 

developing the technology for complex spacecraft, the practices, processes, and tools for 

management of that complexity lag far behind. In particular, we don’t have a way of evaluating 

or deciding that complexity has reached an unacceptable level of risk. 

FINDING 6b - Indications of potential spacecraft anomalies exist in test data, but are not 

always observed or not adjudicated. 

As spacecraft systems in general, and FM systems in particular, become more capable and more 

complex, test programs, especially system-level hardware/software test case, are becoming 

overwhelmed with data. Indications of problems are expressed during test, but are often not 

observed or are ignored. In several cases, reviewing test results after an anomaly showed 

indications of the problem, but the problem was not identified in the test because either a) the 

pass criteria of the test was met, b) inadequate analysis time was allocated, c) the test set was not 

comprehensive, and/or d) the schedule and budget pressures were forcing the test program 

forward. 

In addition to indications of problems being missed in test programs, the indications of problems 

are also present, but not identified, in data during flight. While missions have telemetry sets with 

thousands of parameters, the parameters needed to diagnose a problem before it becomes an 

anomaly were, in some instances, not available in telemetry. This is often due to a lack of depth 

in the telemetry. In a situation very similar to test programs, telemetry often only alerts the 

ground once an anomaly occurs, but does not provide insight to the ground when the system is 

performing in an unpredicted way that does not officially fail the pass/fail criteria. A minimal 

design criterion for telemetry could be that the list of fault cases carried by the project can be 

detected and discriminated. 

Recommendation 6a: Design for testability: Architectures should enable post-launch and post-

test diagnosis. 

In both test and flight programs, telemetry often only alerts the ground once an anomaly occurs, 

but does not provide insight to the ground when the system is performing in an unpredicted way 

that does not officially fail the pass/fail criteria. In both test programs and in telemetry 

definitions, we need to be looking for unexpected performance and early indicators of problems, 

instead of waiting until the thresholds for a given monitor are passed. 

When recoverable faults happen in flight, the problem must be understood in a rapid manner to 

ensure spacecraft safety and understand any potential modifications to future operations. 

Architectures should enable rapid diagnosis (whether onboard or operator-in-the-loop) following 

a fault. Examples discussed during the workshop demonstrated the ability to save off data before 
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and after a fault so that this data can be transmitted to ground tools that enable an operator to 

rapidly determine the root cause of a problem. Such a feature is also highly valuable during I&T, 

where data from system-level fault management testing can aid in post-test analysis and 

troubleshooting. 

Recommendation 6b: Examine all observed unexpected behavior. 

It is necessary to investigate all anomalies during a test program and in-flight. An unacceptable 

approach is to simply determine that the official pass/fail criteria have been met. Test programs 

need to be created to test against all aspects of expected performance, not simply to test to find 

complete failures. In both test programs and in telemetry definitions, we need to be looking for 

unexpected performance and early indicators of problems, instead of waiting until the thresholds 

for a given monitor are passed. Problems can be identified if the expected performance of the 

system does not match predictions in any area, including areas that are not being focused on in 

that particular test and including performance that does not satisfy fail criteria but is unexpected. 

A way to deal with complexity in system behavior is to attempt to define so-called “behavior 

envelopes” that redefine the testing/validation challenge to verifying that designed or even 

emergent behavior stays within a regime that is known to be safe, rather than testing all possible 

scenarios, which impossible for complex systems. 

Recommendation 6c: Implement continuous process improvement for FM lifecycle. 

The V&V process is, by nature, a learning process that should evolve throughout its duration. In 

a continuous fashion, lessons learned during the process should be used to update and improve 

the procedures for the remainder of testing. An appropriately architected V&V process should 

give rise to anomalies and failures on the ground. This is natural and desired because it is much 

less costly to deal with such issues on the ground. Workshop participants agreed that every 

anomaly or problem revealed during the V&V process should be fully addressed and resolved 

before launch to avoid occurrence on-orbit, where it would be costly and, perhaps, impossible to 

overcome. Emphasis should be on learning and applying from the V&V process vs. a goal that 

100% of the planned tests are completed. 

Solid pass/fail criteria should be established. Without clear definitions for pass and fail, it is too 

easy to call a test a success. Criteria must be pre-determined to ensure that test standards are 

maintained on the basis of actual testing requirements and on testing results. Additionally, proper 

tools should be developed to assess passage or failure of tests. 

Recommendation 6d: Catalog and integrate existing FM analysis and development tools, to 

identify capability gaps in the current generation of tools and to facilitate technology 

development to address these gaps. 

There is a strong relationship between tools and processes; therefore, one way to address issues 

in the FM development process is to establish a strong set of integrated tools based on the 

processes and measures described in Recommendation #5. A sampling of the FM tools in current 

use was collected at the workshop; this sampling is included in Appendix C, the summary of the 

Breakout Sessions. Although the list of tools is extensive, few, if any, are integrated or 

coordinated in terms of functionality or even terminology. One area where integration and 

coordination of tools might be particularly helpful is in the linking of analysis and design. In 

current practice, traditional analysis tools, such as FMEA, are not linked in any direct way with 

the tools and architectures being developed as part of system design. Linkage through common 
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or integrated tools will facilitate communications and help eliminate unnecessary sources of error 

in the system development process. 

Certain capability gaps are evident in the current generation of tools. During concept and 

requirements development, for example, tools for quantitative complexity analysis and 

complexity/risk tradeoff would be particularly valuable. These tools should be linked with 

costing tools to enable early, high-level decisions in cost/risk, hardware/software, and 

human/system trade spaces. Better tools for system behavioral modeling during early 

development were also cited as a current capability gap. 

FINDING 7 – The impact of mission-level requirements on FM architecture complexity 

and V&V is not fully recognized. 

Certain mission requirements were commonly cited as drivers for fault management designs. 

Common themes included the need for a fail-operational FM strategy, ground-in-the-loop 

response time, protection of resources, and the presence of a single fault-tolerance policy. 

Several responses also included discussion about how requirements were interpreted and applied. 

Almost universally, respondents were clear that the top-level mission requirements drive the 

complexity of FM systems most strongly, but that organizational cultures also have a notable 

influence. 

The most stringent complexity driver appears to be the presence of a single fault-tolerance 

requirement. The requirement itself drives the design of a fully redundant system and a FM 

system that is capable of monitoring and managing that redundancy. Three missions that had 

significant trouble with complexity reported problems with interactions between fault monitors 

or responses., Three other architectures had explicit provisions to de-conflict fault management 

autonomy with other on-board autonomy. Other responses alluded to similar difficulties. In a 

rule-based architecture, the number of possible on-board response interactions increases as the 

square of the number of fault monitors and responses. Additionally, as a single fault tolerance 

requirement drives the number of fault cases that must be handled, single fault tolerance puts a 

lower bound on the system complexity necessary to meet the mission requirements. 

Missions that require autonomous recovery of time-critical events tend to drive the project to a 

complex fail-operational strategy. Conversely, missions with less stringent performance needs 

are able to adopt a fail-safe approach. Every response collected mentioned a need to fail 

operational. In three cases, the mission did not require recovery of system-wide performance, but 

did identify certain functions that needed protection. Ion propulsion, for instance, requires a 

long-term thrust that, if interrupted for too long, might keep the mission from staying on the right 

trajectory. In other cases, thermal control, power production, or the protection of an instrument 

might impose tight pointing constraints, making reduced pointing modes impractical for vehicle 

safing. Similarly, strict availability requirements can also translate to fail-operational 

requirements when the ground-in-the-loop recovery time is too long. 

The clearest driver for fail-operational designs is the need to complete a mission critical event. 

Six of the missions that provided input identified at least one event that required most of the 

system to fail operational. For interplanetary missions, encounters commonly come with some 

critical component, usually a timed event that, if not completed, could cause a loss of science or 

the mission: for example, a fly-by observation of a comet or asteroid requires stable, accurate 
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pointing and a working science payload; orbit insertions or landings need propulsion systems or 

deployments to work reliably and on time. Functions that are necessary to completing these 

activities must be recovered in a timely manner to keep the spacecraft safe and to meet mission 

objectives. 

Moreover, when performing a critical event at interplanetary distances, communications can 

have hours-long delays, which means most critical events are completed well before operators 

observe it on the ground. As such, the ground has little power to intervene in case of a fault, and 

mission designers must rely on autonomy to detect and correct faults in critical equipment. 

Other conflicts over requirements have created unexpected problems for missions. Mission-

specific requirements can impact system design, particularly when trying for re-use of an 

existing design. In one example, a requirement for communications coverage in safe mode 

forced changes to the existing telecom design. In another, very complex FM software was 

developed in response to the need for a flexible system that could be adapted for changing needs 

during different mission phases and deployed across multiple systems with different needs. The 

result is a complexity born of meeting differing or conflicting requirements in a single 

architecture. 

Recommendation 7: Review and understand the impacts of mission-level requirements on FM 

complexity. FM designers should not suffer in silence, but should assess and elevate impacts 

to the appropriate levels of management. 

There was discussion of particular design decisions that led to unnecessary complexity in FM 

design. It will be difficult and overbearing to provide a broad-brush set of fault management 

functions that apply to a wide array of missions. A project-specific fault management plan 

should be developed so as to avoid a costly V&V process definition that is burdened with 

management of non-credible faults, for example. One example cited was the use of concurrent 

fault-response logic, which greatly complicated integration and test. Strong consideration of the 

V&V impacts during mission requirements definition should be given. 

In addition, critical behaviors should be implemented as simply as possible. Simple behaviors are 

easier to characterize and will execute more reliably. Critical behaviors like safing are too critical 

to a mission to add unneeded complexity. A recommendation is to limit the complexity of an FM 

system to only the necessary FM functions as defined by project-specific definitions of faults and 

required fault tolerance. 

One approach to limiting complexity is to implement “dead-end” logic. If there is an appropriate 

end state for every response behavior, the emergent behaviors of the system are much easier to 

predict and significantly more stable. One project experienced the value of dead-end logic in 

flight when a repeating response would likely have been a risk to the mission. 

FINDING 8a – FM architectures often contain complexity beyond what is defined by 

project-specific definitions of faults and required fault tolerance. 

As a consequence of the intricacies and capabilities of fault management, FM systems often are 

required to protect and manage on-board resources. Seven of the 11 missions represented in 

written responses explicitly commented on some form of resource management in their FM 

systems. Because consumables are usually critical to mission life, FM implementation must 
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protect them. Other resources, such as power, must be balanced to ensure the safety of 

equipment. FM systems must also manage any redundant assemblies that are brought on-line as 

part of a response in order to avoid conflicts. These examples of resource management needs can 

and do place non-trivial restrictions on the response to failures, often at the cost of increased 

complexity. 

FINDING 8b – Increased FM architecture complexity leads to increased challenges during 

I&T and mission operations. 

The more capabilities and complex operations we demand of a system, the more potential for 

faults we create and the more complex of a V&V process we require. A good number of 

difficulties in I&T are attributed to the complexity of fault management systems. At higher levels 

of integration, FM systems tend to have emergent behaviors that are difficult to predict, 

complicating the validation task. However, the problem is not limited to the most complex FM 

systems. During system test, one project found that slight variations in initial conditions resulted 

in different system behaviors. Such complexity not only was a difficulty in test, it also led to a 

large set of operational constraints that restricted the number of hardware configurations that 

could be flown once on-orbit. Many of the problems experienced that led to the discovery of 

large problems late could have been avoided with better early testing and more thorough 

behavioral analysis. In addition, there are indications that some FM architectures (e.g., rule-

based systems) are difficult to scale up without introducing significant verification issues. 

The flexibility and configurability of FM systems is one major contributor to increased testing 

complexity. It became clear in discussions that flexibility in systems is both a friend and a foe to 

the fault management engineer. Flexibility in an FM system is positive from a sustaining 

engineering point of view: it is essential for rapid modifications, which are often necessary to 

‘tune’ these complex systems. FM architecture features that permit in-flight modifications are 

invaluable; workshop participants indicated that the ability to modify the fault protection on the 

fly saved several missions from mission failure. However, from the test perspective, it was also 

clear that flexibility in a system could be dangerous. This is especially true of ‘flat’ architectures 

that, when overextended, can result in emergent behavior that is hard to exhaustively capture in 

the V&V process. In addition, the response of any complex and flexible system can be sensitive 

to initial conditions and timing, making the system “fragile” and difficult to test. Even without 

additional complications from timing issues, N! permutations of a flexible system lead to N! test 

cases that need to be run. When the additional sensitivities to timing get added in (timing of 

faults can affect response paths), the test program quickly becomes too vast to cover every test 

exhaustively. This inability to exhaustively test the system has led to operational restrictions and 

adjustments on multiple missions. One mission in particular chose to restrict operations to only 

those states that have been tested. If a change in configuration (i.e., a swap to the redundant side) 

is required in-flight, the mission is put on hold until the tests related to that change are 

completed. It is clear that flexibility is important, but managing and restricting the flexibility to 

be used only when required is equally important. A related discussion is the trade between 

hardware-in-the-loop and simulation-based testing. The latter, in turn, implies the need for 

sufficient fidelity behavior models. These symptoms also hint at architectural weaknesses. 
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Recommendation 8: Assess the appropriateness of the FM architecture with respect to the 

scale and complexity of the mission and the scope of the autonomy functions to be 

implemented within the architecture. 

Complexity in FM systems is a common problem: one of the root causes for not recognizing 

problems ahead of time is the complexity level of a fault management system. Some of the 

complexity grows naturally from the mission design and fault tolerance requirements, but 

additional complexity might be introduced for a number of reasons through the design process. 

FM designers must be aware of the consequences of complexity as it is introduced and must 

make deliberate decisions when introducing features that might increase system complexity. 

Non-essential sources of complexity, like configurability, must be considered carefully. Good 

engineering judgment needs to be used in system design, and the configurability of the system 

should not be an excuse to put off design decisions. 

Flexible, configurable designs can reduce the work necessary to update the system for defects 

found late in the development process. Compiled code is significantly more costly to update than 

commandable parameters; however, the added flexibility does reduce the burden for regression 

testing. Alternately, the added complexity of a heavily parameterized system can make a system 

more difficult to analyze, test, and operate. In one example, the FM design even extended that 

flexible design to configurable responses, which proved to be too loose. In the end, the project 

chose to restrict what operators could do with that flexibility to maintain stable behavior. 

Configurable FM architectures should not be an excuse for loose implementations or delayed 

design decisions. Projects need to define a strong architecture and desired behaviors for FM 

systems early and keep a consistent approach throughout design and test. The overlapping 

concerns of resource management and fault management suggest that both should be addressed 

in a single architecture. 

FINDING 9 – FM architecture development is subject to changing priorities toward cost 

and risk over the course of system development. 

In the early mission phases, where the flight system architecture is being designed, the dominant 

project-level priority across multiple organizations was found to be cost. This can be clearly seen 

in staffing, where many organizations begin projects with the FM task staffed at 1 person or less. 

Late in the project lifecycle, however, organizations reported that the project-level priority 

switches from cost to risk, thereby forcing the fault management architecture to evolve to 

accommodate newly discovered risks to the project. Such architecture evolution is usually done 

in a one-by-one, ad-hoc fashion, and frequently occurs as a result of inadvertent mechanisms, 

such as requirements creep or shifting of organizational expectations. For example, one mission 

was designed with a high tolerance for risk, but eventually launched with a “must succeed” 

mentality that created additional stress on an FM strategy that was not in line with the risk 

posture of management. Other participants shared similar experiences. 

Many organizations have responded to the changing priorities by introducing flexibility for late 

additions into their architectures. Other organizations preferred to focus on developing more 

“inherent” robustness in their architecture early in the program. Some advocated combinations of 

both adding robustness features and flexibility if used sparingly. Regardless of these options, all 

projects are helped by a tougher stance at the project level that considers overall risk in light of 

cost that will be incurred in I&T due to late changes. Moreover, the lack of ability to characterize 
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this "incurred" cost is hampering project management decisions and potentially leading managers 

to lean to the risk side of the trade due to lack of impact information. 

Recommendation 9: Define and establish risk tolerance as a mission-level requirement. 

The consensus across all inputs that addressed these issues appears to be that 1) an early and 

clearly defined risk posture helps guide FM design and 2) consistency throughout the project is 

necessary to avoid friction and to settle on the best FM system for the project. Risk tolerance 

must be agreed upon and well defined early in a project’s lifecycle. 

The level of stress experienced in I&T is closely tied to how much risk can be tolerated and how 

much funding is allocated to testing. Therefore, gaining agreement from all stakeholders and 

lines of technical authority early in the project will help define the scope of testing. 

Finally, project managers must develop and maintain a consistent risk posture over the life of the 

mission development. Drawing a clear line from risk posture to I&T cost will provide projects, 

mission managers, and reviewers with a better understanding of what is the end result of risk 

posture choices. 

FINDING 10a – The bulk of existing FM systems (e.g., mission-specific monitors and 

responses) is not inheritable. Heritage, similarity, and inheritance assumptions tend to 

underestimate budgeting for necessary V&V activities and review milestones. 

Claims of heritage that are not accurate can be cited as one of the main reasons that labor has 

been traditionally under budgeted for fault management. Budgets are often set too low for 

systems with re-use and heritage because it is assumed that the system will require a less 

extensive test program. Case studies have shown, however, that an extensive test program is still 

required for heritage systems. A new spacecraft with legacy software cannot be assumed to 

perform the same as a previous spacecraft, due to differences in timing and other minor system 

differences. 

In addition to budgets being set too low in the case of actual heritage and re-use, budgets will 

also often get reduced based on false or exaggerated claims of heritage. In the proposal or 

planning stages, many missions will claim or assume a large amount of heritage in the fault 

management system, even when it is clear that major modifications will be required. When 

something is classified as heritage or “re-use” it often only has to go through peer-review, not a 

full design review. This tempts management into calling a fault management system heritage 

even when major adaptations might be required to meet the requirements of the new mission. 

FINDING 10b – Current FM systems do not support significant re-use. 

Many organizations employ engine-based or table-driven fault management system designs to 

facilitate software re-use. However, the core of the fault management functionality is not in the 

re-usable engine-based code, but rather the mission-specific alarms and responses that are 

designed and inserted into this code. Through the discussions of various types of FM 

architectures, it was clear that the inability to re-use any significant portion of the mission-

specific design or implementation is a common problem across NASA, JHU/APL, and industry. 

The lack of re-use may be partially explained by the types of one-of-a-kind missions pursued by 

NASA. 
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A heritage system might not be appropriate for a new mission not only for technical reasons, but 

also because of cultural differences between partner institutions. Different organizations 

throughout the aerospace industry have varying fault management philosophies based on their 

organizational risk posture. Commercial organizations tend to have a slightly higher risk 

tolerance than government organizations; this is evident in their various fault management 

philosophies (See Finding 12). This difference in philosophies between various institutions 

means that for each mission, with different institutions providing different roles and 

responsibilities, a new mission-level philosophy needs to be developed. This unique compromise 

between various philosophies for each mission makes re-use of software extremely difficult. 

Recommendation 10: Examine claims of FM inheritance during the proposal evaluation 

phase to assess the impacts of mission differences. 

Within the fault management of any mission, logical patterns should exist that are applicable to 

future missions. Development of fault management re-use concepts, potentially similar to 

software patterns or objects, should be considered. However, the V&V engineer and project 

manager should look carefully at all of the components, environment, and modes of operation 

before exploiting heritage assumptions in an attempt to reduce the level of V&V performed. Use 

extreme caution when attempting or assessing claims of re-use of FM systems. 

FINDING 11 – Inadequate testbed resources is a significant schedule driver during V&V. 

The majority of test campaigns are implemented on test hardware that includes a mix of 

engineering-model hardware with simulated hardware and environments. Every project reported 

the use of multiple venues of varying fidelity. However, testbed resources often are insufficient, 

and availability is a source of contention during V&V. In one example, a project was pushed into 

the development of additional test resources by shifts in the interpretation of FM requirements. 

The lack of adequate testbed resources for FM integration and test was cited by a number of 

organizations as particularly problematic in the later stages of system development. In many 

cases the I&T of FM logic must wait until all other aspects of system hardware and software are 

in place. Resources for early checkout of FM logic prior to or in addition to full-scale spacecraft 

testbeds would be extremely desirable. 

Another major source of difficulty for multiple projects was the difficulty of operating test 

venues. In one example, a project experienced multiple problems with testbeds: lack of fidelity in 

a hardware simulation caused test failures that were later executed successfully on flight 

hardware, and the difficulty of developing test scripts limited the unit testing the project could 

do, pushing the discovery of small errors to later in the test program. Another project did not 

have an adequate simulation of a communication link that, if not discovered during an in-flight 

test, would have resulted in the loss of a mission element. 

Recommendation 11: Develop high-fidelity simulations and hardware testbeds to 

comprehensively exercise the FM system prior to spacecraft-level testing. 

Testbeds are a crucial element of the V&V process for FM and should, therefore, be given 

sufficient resources and be maintained in such a way as to provide the integrity necessary to 

perform pre-flight testing. The critical role of testbeds during the V&V process was discussed at 

length during the V&V Breakout Session. This recommendation is a collection of all of the 

testbed-related recommendations identified at the Workshop, including: 
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1. Testbeds must be kept up to date with the flight vehicle. While it is prudent to make use 

of testbeds developed for previous, similar vehicles, it is critical keep these testbeds up to 

date with the key parameters of the current vehicle. 

2. The fidelity of each testbed and simulation should be clearly defined on the basis of 

mission phase. The credibility, likelihood, and impact of faults can vary tremendously 

between different mission phases. Henceforth, both the fidelity and the need for specific 

V&V tests should be defined on the basis of mission phase, not globally for the mission. 

3. Stress testing is important and should be a required part of the V&V program. Stress 

testing in flight-like scenarios can help to ensure system robustness. This can 

significantly help to mitigate risk in single-string architectures or those with very limited 

redundancy. 

4. Validation should be performed independently from the design developers. It is critical in 

the validation process to capture any inherent flaws or systemic errors in the design. This 

can only be assured through an independent process to avoid a repeat of the same flawed 

logic or erroneous analysis or assumptions. 

5. Evaluate FM test suite quality by assessing test coverage across subsystems and mission 

phases. No single mission phase or subsystem is sufficient to characterize the vehicle’s 

fault management. 

6. Always consider operations when defining the I&T environment and flow. The 

operations define the boundaries to which the system should be tested. Consideration of 

the operations will help ensure that the testing limits are both necessary and sufficient to 

cover the environment to which the vehicle will be exposed in space. Operations should 

be brought into the V&V process early in the lifecycle to ensure that stress levels are 

appropriately defined. 

7. Develop recovery procedures along with FM tests. The assumption from the start should 

be that failures will occur in FM testing and the procedures for recovery should be 

developed right along with the testing plans. This will ensure that anomalies and failures 

will be appropriately adjudicated at the time of testing. 

FINDING 12 – Organizations have different and sometimes conflicting institutional goals 

and risk postures that drive designs, architectures, and V&V plans in different directions, 

causing friction between customers and contractors. 

The decision and design process for FM architectures appears to be driven by different and 

sometimes conflicting factors across NASA, JHU/APL, and industry. The underlying reason for 

these differences is not considered explicitly when designing an FM system, and programs often 

lack the corporate knowledge or documentation of the rationale behind many early design 

decisions. The problem might be that the “why” is missing, so that it is difficult, if not 

impossible, to apply lessons to the next mission in anything other than a blind, knee-jerk fashion. 

Participants articulated various different factors driving decisions and designs of FM 

architecture. These factors include institutional fears, heritage principles, heritage architectures, 

and high-level requirements on the timeliness of FM architecture to return a mission to normal 

operations. What is more intriguing is that some of these factors conflicted between institutions. 

For example, one organization’s institutional avoidance of firing thrusters while out of ground 
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contact directly conflicts with another organization’s institutional avoidance of negative 

acquisition. What becomes apparent in this area is that little corporate knowledge or 

documentation of the rationale for these decisions exists. 

Two respondents reported significant trouble with the interpretation of the single fault tolerance 

policy that created friction as projects implemented FM systems. The core problem these 

missions faced came down to a definition of what faults to protect against, something that varies 

across organizations. FM designers in industry will protect against the most likely failures, while 

designers within the NASA centers take a “possibility over probability” stance and design for all 

failures that might happen. When interpretation of the single-fault tolerance requirement is not 

clear early, a contractor will plan for a “probability” approach and subsequently be surprised to 

find that the NASA buyer expects a more rigorous “possibility” FM system. These conflicts were 

most prevalent in areas of the design where organizations with differing approaches attempted to 

share design responsibility. 

Another symptom of conflicting assumptions and guidelines manifests itself during V&V. Most 

projects perform unit test on assemblies or modules as they become available, and higher-level 

verifications as the system is integrated on an engineering model or flight hardware as much as 

possible. Where organizations diverge is in the extent of high-level testing performed. Industry 

tends to focus on unit and integration testing and requirements verification. NASA, JPL, and 

JHU/APL go a step further and perform varying amounts of scenario testing for more rigorous 

validation of the system design. This difference is cited in a couple of instances as a source of 

friction, as one organization tends to expect more testing than another, but those expectations are 

not well-defined early. 

The root of many of these challenges is the organizations’ different positions on risk posture. A 

good example of this difference in risk posture was stated as the difference between designing 

against probability versus designing against possibility. These differences can manifest 

themselves during reviews, where institutional views drive assumptions on what is or should be 

the overall project risk posture. Though reviews are lauded as a great help to FM design, projects 

have found that overly zealous review findings have imposed unexpected FM requirements on 

projects and forced a shift in project risk posture that drove some of the problems during 

implementation and test. 

Recommendation 12: Collect and coordinate FM assumptions, drivers, and implementation 

decisions into a single location that is available across NASA, APL, and industry. Utilize this 

information to establish / foster dedicated education programs in FM. 

We recommend establishing a collection of requirements, driving factors, and implementation 

decisions in a single location to be made available to future fault management architects to 

provide a more complete view of the trade space and to enable more educated decisions for 

future projects. The culmination of this information would be an established vocabulary, 

suggested representation approaches, and a list of design principles utilized on prior missions. 

Each principle should be presented with an associated rationale statement, consequences (pro 

and con) of adopting the principle, and example implementations of this principle on past 

missions. Once developed, these materials could form the training material for educating future 

FM engineers (see Recommendation #2b). 
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IV Future Directions 

A. Opportunities for Investment 

A number of recommendations for emphasis or investment by NASA were discussed as part of 

the breakout sessions. These opportunities, summarized in the subsections that follow, are 

organized along the three breakout sessions of Architectures, V&V, and 

Practices/Processes/Tools. 

1. Architectures Opportunities for Investment 

The following opportunities for investment are derived from the Workshop discussions of 

lessons learned and best practices for FM architectures. These opportunities represent potential 

solutions to gaps identified in current fault management architecture practice. 

• Capture existing FM architectures and requirements on mature programs. Collect design 

drivers and implementation decisions in a repository to provide a resource that enables 

future fault management architects to make better trades. Such a resource could also be 

used as a learning tool for new missions and young engineers. 

• Develop and/or put into practice methodologies for more rigorous architecture 

specification to enable formal architecture-level analyses and facilitate architecture 

review and pattern re-use. 

• Develop visual formalisms that facilitate FM architecture design and review, such that 

the architecture is understandable by system engineers and non-fault management domain 

experts. 

• Articulate a comprehensive list of functional and non-functional properties for use as 

figures of merit in assessing FM architectures, and compile a mapping from architectural 

features to the functional and non-functional properties they promote (including examples 

of such features). 

• Investigate architectures that inherently support rapid requirements-based testing early in 

the project lifecycle. 

2. V&V Opportunities for Investment 

The following opportunities for investment are derived from discussions to determine the lessons 

learned and best practices for spacecraft verification and validation. These opportunities 

represent potential solutions to gaps identified in the spacecraft V&V realm. 

• Develop a means to confine complexity to testable units. 

• Develop an approach to establish complexity containment regions. 

• Develop an evolvable system model, capable of being validated by tests on flight 

hardware and software that is sufficient to be used for primary scenario and FM V&V. 

• Develop a design environment/tool to capture desired system and FM behavior that is 

capable of dynamically executing the behavioral model. 
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• Develop a tool to choose which subset of tests to run when exhaustive testing is 

infeasible. 

• Prioritize V&V actions with buy-in across the program. 

• Develop, maintain, and update tools to support the V&V process. Include the following: 

! Tools to analyze test data in timely fashion. 

! Ops tools and ground tools. 

! Tools to capture code coverage accomplished during tests.  

! Configuration management tools for testing.  

! Design-time test generation tool. 

! A tool to highlight high water marks. 

! Tools to specify and monitor safety properties through development and test. 

! Success trees and fault trees. 

! Software simulation tools. 

3. P/P/T Opportunities for Investment 

The following opportunities for investment are derived from discussions to determine the lessons 

learned and best practices for FM Practices, Processes, and Tools. These can be grouped into 

“processes and tools” and “organization and training,” each of which is summarized below. 

a. P/P/T Processes and Tools 

With regard to processes and tools: 

• Processes and tools should be closely linked; however, at this point, it is apparent that 

more focus has been placed on the former in most organizations. Tool use was 

characterized as “viral” in nature, with good tools propagating between projects and 

organizations in an ad hoc manner, as opposed to being standardized and specified 

relative to a overall desired process and workflow in the FM development process. 

• Tool integration should be facilitated through work on common terminology/taxonomy, 

metrics, and interface specifications. In particular, there should be work to integrate “top 

down” requirements development tools, such as fault tree analysis, with “bottoms up” 

design tools, such as FMEA. 

• Complexity analysis tools should be developed for use in concept development and 

requirements definition. This would allow FM analysis to be incorporated into Pre-Phase 

A design centers, into mission costing models, and into various trade space evaluation 

processes. Ideally, tools would be available for behavioral modeling early in system 

design, and these tools would link with FM design, implementation, and test tools. 

Finally, process templates should be developed that build upon this new class of tools. It 

was felt that current knowledge across the community could be collected in an FM 

process template or handbook. Such as resource might specify different classes of 

mission with regard to their FM requirements and then define specific design guidelines 

for each. 
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b. Organization and Training 

In the area of organization and training, there were only two top level recommendations: 

• First, a recommendation for NASA to address the educational issues associated with 

establishment of a dedicated FM engineering discipline. This moves beyond the 

specification of a common taxonomy and set of metrics to include targeted university 

programs and texts. 

• Second, a recommendation to begin bootstrapping a community dedicated to the 

engineering and science of deep-space mission FM. In some ways, this workshop might 

have served as a first step towards this goal. 

B. Future Plans 

Looking back on the original purpose for holding the workshop, we note the observation on 

multiple missions of an unplanned expenditure during spacecraft I&T to accommodate 

unforeseen or unplanned testing time for FM systems. To ameliorate this situation, the 

recommendations outlined in this white paper propose ways to make FM systems a) more 

predictable in development, in cost, and in schedule, and b) more manageable by identifying 

work units that are do-able by engineers at a specified level of experience. In this section, we 

identify a number of potential paths to follow to implement these recommendations. In addition, 

we strongly recommend the following activities: 

• Hold subsequent workshops to identify solutions to the issues raised. It was beneficial to 

bring the community together to share ideas. The first workshop concentrated on 

assessing the current state and uncovering the common issues. The next workshop could 

focus on options and solutions and could include those disciplines that were weakly 

represented, such as Systems Engineering and Operations. Also, additional government 

and industry organizations should be included in these activities to expand the focus and 

to view what is being done in other industries. 

• Establish a NASA Working Group for Fault Management that will take ownership of the 

issues identified, and establish ways to mitigate them within the NASA governance. This 

Working Group should be populated by all of the NASA Centers that are affected by the 

FM issues discussed in this white paper. 

• Explore the following concepts: 

! How can the FM discipline achieve a more holistic view? 

! Do we need a paradigm shift? 

! Entertain ideas from outside of our field. What are the larger system management 

issues? 

Table 6 provides a summary of a suggested implementation plan for the proposed timeframes for 

the opportunities for investment, displayed as an evolution of capabilities along a timeline 

showing when each could be accomplished. Table 7 suggests a potential roadmap that identifies 

maturation paths for multiple focus areas. 
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Table 6. Timeline of recommendations. 

Focus Area Near Term Mid Term Long Term 

Taxonomy & Methodology 
Standardization 

• Standard Lexicon 

• Fundamental Metrics 

• Standard Mission Types 

• FM Process Template(s) 

• Refined Metrics & 

Performance Tracking 

• Process Standardization 

 

Technology & Tools • Survey Current Tools 

• Survey Related Disciplines 

• Architecture Analysis 

• Complexity Analysis 

• Design Specification & 

Review 

• Formal Methods for V&V 

• Cost/Risk Estimation 

• Complexity 

Management 

Training & Education • NASA Training Courses 

• Coordinated Conferences 

• Reference Handbook 

• University Programs 
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Table 7. SMD/PSD planetary spacecraft fault management roadmap. 

Thrusts Explore Plan Develop Deploy 

Tools Create trade space of existing 
tools -- V&V: Static analyzers 
& model checkers; System 
Analysis:  

Identify tools to be 
adopted, tools to be 
developed 

Create a complexity 
analysis tool for use in 
Concept Development 
and Requirements 
Definition 

  
Architectures Create trade space of existing 

and future FM architectures - 
how each handles complexity, 
flexibility, growth, risk, 
testability [begun at “On-board 
FM Management for Planetary 
Spacecraft” Session at 2009 
AIAA InfoTech@Aerospace 
Conference] 

    Technology 
Demonstration Program 
to validate FM 
technology for future 
missions 

NASA-wide (or Center-wide or 
Directorate-wide) positions on 
FM: FM stance/template for 
different classes of missions; 
Design/evaluation criteria for 
FM systems; metrics 
specifications 

      Processes 

Collect schedule and cost 
metrics of current processes to 
form bases of estimates -- e.g., 
staffing profiles through ATLO 

Identify FM performance 
metrics -- reliability, 
coverage, operational 
availability, autonomy, 
complexity 

Establish consensus 
on FM metrics/stance 
for different classes of 
missions.  

Make FM an explicit 
effort within the standard 
flight project WBS and 
an explicit consideration 
as a proposal evaluation 
criteria 

Courses: Identify existing 
courses within NASA and at 
universities that can be 
augmented with FM training 

      

Presentations: present findings 
at workshops, conferences, 
NASA boards [e.g., QMSSW, 
Sandia Spaceborne 
Computing Workshop, Dx-08, 
FSW-08, 2009 IEEE 
Aerospace, 2009 
InfoTech@Aerospace] 

      

Training & 
Education 

Textbooks: Review textbooks 
available today 

Assess need: Textbook 
in work; Plan for a 
Practitioner's Handbook: 
Identify contents and 
authors 

  Publish Practitioner's 
Handbook 

Terminology, Taxonomy - 
survey terms currently in use. 

Establish multi-Center 
team 

Establish common FM 
vocabulary, taxonomy 

  Standards 

Representation - survey 
approaches currently in use. 

  Develop visual 
formalism that enables 
FM architecture design 
and review - e.g., 
SysML 
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V Appendix A: Workshop Organization 

A. Workshop Flyer 

Fault management for today’s deep-space missions is a complex problem, going well beyond the 

typical safing requirements of simpler missions. Recent missions have experienced technical 

issues late in the project lifecycle associated with the development and test of fault management 

capabilities, resulting in both project schedule delays and cost overruns. These issues are 

expected to cause increasing challenges as the spacecraft envisioned for future missions become 

more capable and complex. In recognition of the importance of addressing this problem, the 

Discovery and New Frontiers Program Office is planning a Fault Management Workshop, on 

behalf of NASA’s Science Mission Directorate, Planetary Science Division, to bring together 

experts in fault management from across NASA, DoD, and industry. This will be a three-day, 

multi-Center workshop to identify fault management lessons learned, best practices, and future 

opportunities for investments. The scope focuses on deep-space and planetary robotic missions, 

with full recognition of the relevance of, and subsequent benefit to, Earth-orbiting missions. 

Workshop attendees will review recent mission experiences, work together to understand 

common issues, identify lessons learned and best practices for fault management, and explore 

emerging technologies in this field. The outcome of the workshop will be a white paper 

documenting the key findings, which will be made available to all organizations involved in 

current and future space mission development. 

The NASA SMD/PSD Fault Management Workshop will focus on the following three Topics: 

1. Fault Management (FM) Architectures. 

2. FM Verification and Validation (V&V). 

3. FM Development Practices and Processes. 

We are looking for participation from members of the spacecraft community who have 

experience in designing FM architectures, testing FM on simulators/testbeds/flight hardware, and 

operating flight systems where FM has been exercised. We also are interested in having 

participants who are involved in establishing organizational practices and processes that have an 

impact on FM design and development. 

Day 1 will lay the foundation for the participants to understand how FM is 

conceived/designed/implemented/operated at the participating organizations, including NASA 

Centers (APL, GSFC, JPL, and MSFC), DoD, and relevant industry partners. Presentations will 

consist of Case Studies of recent missions from each organization, focusing on the three Topics 

listed above. 

Day 2 will consist of three separate Breakout Sessions, one dedicated to each Topic. Registrants 

will participate in working groups to identify issues, to capture lessons learned, and to enumerate 

best practices. Day 2 also initiates a Poster Session for technologists to present concepts and 

technology developments relevant to the future of FM. The Poster Session continues throughout 

the remainder of the workshop. 
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Day 3 will begin with presentations to all participants summarizing the findings from each 

Breakout Session, with the goal of drawing conclusions from what we have learned in the 

previous days’ activities. A group discussion follows, to explore and capture the issues, lessons 

learned, and best practices that cut across the three Topic areas. The day concludes with 

presentations on future directions and opportunities from researchers in academia, government, 

and industry. 

The attendance at the FM Workshop will be limited in order to promote an interactive 

environment. The number of registered participants is targeted at 50-60, with all participants 

taking an active role in presenting, contributing in a Breakout Session, and/or authoring a poster. 

Online registration will open in February 2008. 

Program Committee 
 

Program Chair: 

Jim Adams, Deputy Director, Planetary Science Division, NASA HQ 

Program Host: 

Paul Gilbert, Manager, Discovery and New Frontiers Office, NASA MSFC 

Workshop Director: 

John M. McDougal, MSFC 

Steering Committee: 

George Cancro, APL 

Chris P. Jones, JPL 

John M. McDougal, MSFC 

Steven S. Scott, GSFC 

Workshop Technical Coordinator and Point of Contact: 

Lorraine M. Fesq, JPL, 818-393-7224, Lorraine.M.Fesq@jpl.nasa.gov 

Location 

The NASA SMD/PSD Fault Management Workshop will be held in the heart of the French 

Quarter, at the Ritz Carlton Hotel, at 921 Canal Street in New Orleans, LA. For more 

information on the venue, visit the hotel website at  

http://www.ritzcarlton.com/en/Properties/NewOrleans.  

This workshop is open to US Persons as defined by 22 CFR 120.15, which includes US 

citizens and lawful permanent residents in the US. 

B. Workshop Overview 

To find ways to ameliorate the schedule, cost, and predictability issues observed during the 

implementation of FM for planetary missions, PSD directed the Discovery and New Frontiers 

Program Office (D&NF PO) to host a workshop to bring together FM experts from government, 

industry, and academia to discuss their experiences and offer their perspective on solving these 

issues. To ensure broad participation, a Steering Committee was formed with representatives 

from APL, GSFC, JPL and MSFC. 
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The approach taken to organize the workshop was to assemble key players in the spacecraft FM 

field across NASA, industry and other organizations to: 

• Capture the current state of FM. 

• Expose the challenges associated with engineering and operating FM systems. 

• Identify and describe the issues underlying these challenges. 

• Discuss and document best practices and lessons learned in FM. 

• Explore promising state-of-the-art technology and methodology solutions to identify 

potential investment targets. 

The scope of the workshop focused on deep-space and planetary robotic missions since the 

observed challenges had all occurred on deep-space missions. However, it was recognized that 

Earth-orbiting missions also suffered from similar symptoms, although perhaps to a lesser 

degree, and that there was sufficient overlap in FM architectures and V&V methodologies to 

warrant strong representation and participation from the EO community. The scope specifically 

did not include human-rated missions with the acknowledgement that these missions involved 

additional FM issues that typically are not required on purely robotic missions. However, 

members of the human spaceflight community did attend with the goal of understanding the 

issues uncovered during the workshop and looking for lessons learned and best practices that are 

relevant to their missions. 

C. Workshop Goals, Format and Activities 

The NASA SMD/PSD Fault Management Workshop was held over 3 days (April 14 - 16, 2008) 

in New Orleans, Louisiana. Attendance at the workshop was limited in order to promote an 

interactive environment. All attendees were expected to actively participate in workshop through 

presentations, posters, and/or active participation in the dialog during the breakout sessions. In 

total, the workshop had approximately 100 attendees from 31 various organizations across 

government, industry, and academia. 

The primary goal of the workshop was to identify technology and/or process issues driving Fault 

Management cost growth and schedule growth in unmanned, autonomous spacecraft today. 

Participants were tasked with identifying best practices to address those issues, and opportunities 

for investment to mitigate or resolve those issues. The expected outcome of the workshop was 

not to produce a recipe or a set of standards. Instead, the goal was to rise above institutional 

preferences and evaluate the applicability, strengths, and weaknesses associated with the 

different approaches. 

The purpose for the workshop was to provide guidance for future programs and technology 

development. This guidance was to come in three major areas: 

• Lessons Learned. 

• Best Practices. 

• Opportunities for investment. 

The target audience for the workshop results and this white paper was FM practitioners, future 

proposal evaluators, reviewers, and project/program managers. It should be noted that the 
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workshop was not looking to produce a recipe or a set of standards. Instead, the goal was to rise 

above institutional preferences and identify the strengths and weaknesses associated with 

different approaches, providing practitioners with the information required to knowledgeably 

tailor architectures and processes to their application. 

The workshop was organized around four components: case studies, invited speakers, targeted 

round table discussions, and poster presentations. Figure A1 shows the workshop agenda, 

including case study presentations and invited speakers. Current FM approaches and techniques 

were collected using two formats. Participants in the workshop were requested to provide white 

paper inputs (RFWI) summarizing the history of fault management on their projects in addition 

to their participation in the workshop itself. In addition, 12 cases studies covering a variety of 

mission types and FM issues were selected for presentation at the workshop. Case study 

summaries, RFWI input, and abstracts for the Poster Presentations are included in the other 

Appendices. 

The first day of the workshop was geared towards understanding the current state of fault 

management through case study presentations. Thirteen case studies were presented that included 

lessons learned from eight current or past missions. In addition to these lessons learned, 

presentations were also given on the current state of fault management practices and processes 

across various organizations. 

For the second day of the workshop, the participants broke into three breakout sessions to focus 

in on detailed topics. The three breakout sessions focused on V&V, architectures, and practices, 

processes, and tools. Participants were asked to attend only a single breakout session over the 

course of the day, but were allowed to choose whichever breakout session most interested them. 

Participation was spread approximately equally across the three breakout sessions. Each breakout 

session was charged with identifying and characterizing cardinal issues in their particular sub-

topic. The Poster Session began on the afternoon of Day 2, and continued as an adjunct activity 

throughout the rest of the workshop. 

The third day was designed to capture the results of the workshop, to integrate the findings, and 

to present new ways to view the field of Fault Management. Each of the three Session Chairs 

from Day 2 presented a summary of findings from the three Breakout Sessions, stressing Lessons 

Learned, Best Practices, and Opportunities for Investment. The invited speakers from academia 

presented different perspectives and new insights into alternate approaches to FM software 

architectures and V&V techniques. The workshop ended with a group discussion on the final 

afternoon where each participant was given the opportunity to bring up any issues that were not 

already covered, summarize findings, or make any additional comments. It should be noted that 

each and every participant had something additional to add even after three days of discussions – 

showcasing the continuing spirit of open discussions and great dialog that was present 

throughout the entire workshop. 
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Figure A1. Fault Management Workshop agenda. 
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The workshop was well attended by 100 representatives from a variety of government, industry, 

and academic institutions (see Table A1). The attendees also brought expertise derived from a 

wide spectrum of missions, both in terms of operations, duration, and size, and functional roles. 

Table A1. Participants and Missions represented at the SMD/PSD FM Workshop. 

Institutions 

NASA MSFC, JPL, JSC, ARC, HQ, GSFC, Stennis Space Center, JHU/APL 

Other Government AFRL, NRL, DARPA, NRESS 

Academia MIT, SRI, Carnegie Mellon University, Iowa State University,  

Industry Northrop Grumman Space Technology, Lockheed-Martin, Draper Laboratory, The Boeing 
Company, Aerospace, CSC, Ball Aerospace & Technologies Corp., ASRI, Bastion 
Technologies, General Atomics, Inspace Systems, Interface & Control Systems, L-3 
Communications, OSC, RIACS, Space Systems Integration, The Aerospace Corporation, 
USRA 

Missions 

Low Earth Orbit HST, Chandra, TRMM 

Deep-Space Missions Cassini, New Horizons, MRO, Dawn, MER, JWST, DI, STEREO, Messenger 

Other TacSat, SDO, GPM, Constellation – Ares, Orion 

Functional Roles 

Engineers Software Reliability, spacecraft systems, software, technical supervisors, computer 
scientists, fault protection, avionics, project chief, system health management, program 
integration managers, fault management, control systems, systems and software chief, 
sustaining engineering 

Managers Program managers, V&V managers, flight system managers, section heads, group 
supervisors, division chief engineers, directors 

Academia Program director, professors 
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VI Appendix B: Case Study Presentations 

One of the primary goals of the workshop was to expose the current state of fault management. 

This goal was addressed on the first day of the workshop through a series of case study 

presentations. Thirteen case studies were presented that exposed issues dealing with in-flight 

anomalies, project FM flight experiences, project FM development experiences, and industry FM 

philosophy and approaches, as well as lessons learned from eight current or past missions. The 

following paragraphs summarize the case study presentations and identify common themes. The 

specifics of the presentations are being withheld to honor the closed nature of the workshop, 

which allowed presenters and participants to be quite candid and open. 

A common message expressed in numerous presentations was that in many missions there 

existed indications of problems prior to an anomaly occurring, but the evidence was not 

examined or recognized in advance, perhaps due to incomplete testing, insufficient testbed 

fidelity, or lack of schedule to examine all of the test data. This is true both for test programs and 

in-flight data. In several cases, reviewing test results after an anomaly showed indications of the 

problem, but the problem was not identified in the test because the pass criteria of the test was 

met and schedule and budget pressures forced the test program forward. It is necessary to 

investigate all anomalies during a test program, and not simply determine if the test has passed 

the official pass/fail criteria. Test programs need to be created to test against all aspects of 

expected performance, not simply to test to find complete failures. Problems can be identified if 

the expected performance of the system does not match predictions in any area, including areas 

that are not being focused on in that particular test, and including performance that does not fail 

criteria but is also unexpected. In addition to indications of problems being missed in test 

programs, the indications of problems were also present, but not identified, in data during flight. 

While missions have telemetry sets with thousands of parameters, the parameters needed to 

diagnose a problem before it becomes an anomaly were often not available in telemetry. This is 

often due to a lack of depth in the telemetry. In a very similar situation to test programs, 

telemetry often only alerts the ground once an anomaly occurs, but does not provide insight to 

the ground when the system is performing in an unpredicted way that does not officially fail the 

pass/fail criteria. In both test programs and in telemetry definitions, we need to be looking for 

unexpected performance and early indicators of problems, instead of waiting until the thresholds 

for a given monitor are passed. Proper visibility into the behavior of these systems is key. Tools 

might need to be developed to more rapidly and accurately assess the data provided. 

One of the root causes for not seeing indications of problems ahead of time is the complexity 

level of the fault-management systems being designed and used today. One of the large enablers 

to increased complexity in fault management systems is increased flexibility. It became clear in 

discussions that flexibility in systems is both a friend and a foe to the fault management 

engineer. From a sustaining engineering point of view, it was clear that flexibility in a fault 

management system is a very positive thing. The ability to modify the fault protection on the fly 

saved several missions from mission failure. However, from the test perspective, it was also clear 

that flexibility in a system can be very problematic. The response of a complex and flexible 

system can be very sensitive to the initial conditions and timing, making the system “fragile” and 

difficult to test. Even without additional complications from timing issues, N! permutations of a 

flexible system lead to N! test cases; to adequately test complex behavior, the number of test 

cases increases exponentially. When the additional sensitivities to timing get added in (timing of 
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faults can affect response paths), the test program quickly becomes much too vast to cover every 

test exhaustively. This has led multiple missions to restrict operations only to states that have 

been exhaustively tested. If a change in configuration (i.e., a swap to the redundant side) is 

required in-flight, the mission is put on hold until the tests related to that change can be 

completed. It is clear that having a system that is capable of being flexible is important, but 

managing and restricting the flexibility to be used only when required is equally important. 

Whether the system is designed to be flexible or not, it is clear that as mission concepts and 

spacecraft become more and more complex, the fault management systems associated with those 

spacecraft need to become more complex. As the systems become more complex, it is becoming 

increasingly important that the process of designing the fault management system needs to begin 

in the very early stages of the mission design process, and possibly requires new architectural 

approaches. The change needs to begin at the proposal, or initial planning level, and a strong 

fault management lead and team need to be supported throughout the program. Ground support 

equipment and personnel need to be brought onto the project early enough to make a difference. 

The message that fault management cannot be pushed back until the later stages of design was 

reiterated throughout many of the case study presentations. A suggested reason for the current 

situation is the notion that most, if not all, organizations do not recognize FM as a separate 

discipline, but rather as an adjunct duty for systems engineers or as part of the flight software 

development effort. 

The biggest source of evidence that fault management is not considered early enough in the 

design process is the large increases between planned labor and actual labor hours in recent 

missions. One case study gave an example of the fault management task being planned for 0.5 

FTE throughout the mission; in actuality, FM staffing peaked at 14 FTE during the V&V stages. 

This was a common occurrence. Evidence suggests that fault management is viewed initially as a 

side responsibility of a systems engineer, increased to a full time job as the mission progresses, 

and eventually an entire team is required to deal with problems, testing, etc. This is a problem 

not only from a budget stand point, but also logistically. People cannot start on a program and 

understand everything from the day they begin. Therefore, in these situations the core team needs 

to spend time not only getting their job done, but also training the new people who are needed to 

handle the much larger work load than was anticipated. The first and most obvious suggestion 

for improving this situation is to plan for an adequate work load based on past staffing metrics 

from the initial planning stages, including enough personnel and time for test program 

preparation and execution. In addition, the steady evolution of a FM architecture could improve 

the situation through re-use of test plans and the distribution of a knowledge base among 

personnel. Lessons learned from one project are easiest to apply to the next project if the 

personnel are the same. It is important to examine heritage carefully. There exist inherent 

differences between unique deep-space probes and similarly repeated Earth orbiting missions. 

Finally, a fault protection process should be defined at each organization with team definitions 

and responsibilities laid out from the early planning stages. 

While it is clear that a team responsible for the fault management process needs to be defined 

and utilized early, it is not clear what the organizational home of that team should be. While 

workshop participants agreed that fault management is a systems-level issue, there was some 

disagreement about whether or not the team in charge of fault management should be fault 

management specialists or systems engineers focused on fault management. Having a large core 
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team of systems engineers, without any specific fault management engineers, means that fault 

management will at times be pushed off for a higher priority systems issue. However, this team 

set-up would also imply that the engineers designing the fault management system would by 

definition be experts in the overall system and could better understand the interactions and needs 

of the fault management system. On the other hand, if fault management becomes a separate 

product team, the responsibility is more focused, which is good. However, making FM a separate 

product separates it from the design of the overall system, which makes the design process more 

difficult and might produce a less robust fault-protection system. A third option is to allow fault 

management to remain among the systems engineer responsibilities, but to have a person or sub-

team specifically responsible for fault management. In this case, there could also be an integrated 

systems team, consisting of existing members of the systems engineering team focused on 

various aspects of the design (fault management, flight software, testing, etc.) that meets on a 

regular basis to be sure that everything is integrating correctly. No matter where the fault 

management team is organizationally located, the fact that the team needs to be pulled together at 

an earlier stage and that the analysts (FMEAs, PRA) and the designers (fault management, 

testing) need to have more interaction was universally agreed upon. 

One of the main reasons that labor has been traditionally under budgeted for fault management 

systems is claims of heritage that are not accurate. In the proposal or planning stages many 

missions will claim or assume a large amount of heritage in the fault management system, even 

when it is clear that major modifications will be required. When something is classified as 

heritage or “re-use” it often only has to go through peer-review and not a full design review. This 

tempts management into calling a fault management system heritage even when it clear that 

major adaptations are required to meet the requirements of the new mission. Budgets are often 

set too low even for systems with actual re-use and heritage because it is assumed that the system 

will not require as extensive of a test program. Case studies have shown, however, that an 

extensive test program is still required for heritage systems. A new spacecraft with legacy 

software cannot be assumed to perform the same as a previous spacecraft, due to differences in 

timing and other minor system differences. 

One of the reasons that a heritage system often will not work in a new mission is not technical, 

but cultural differences between partner institutions. Different organizations throughout the 

aerospace industry use different terminology and have varying fault management philosophies 

based on their organizational risk posture. Commercial organizations tend to have a slightly 

higher risk tolerance than government organizations. This is evident in their various fault 

management philosophies. This philosophy difference was stated as the difference between 

designing against probability versus designing against possibility. One specific example that was 

given was two ways to interpret the term “single fault tolerant.” In one organization’s definition, 

a design was able to survive any single fault, but that fault could be an operator error, a hardware 

error, a software error, etc. Any combination of those faults was considered beyond single fault 

and outside the scope of the fault management system. A second organization viewed single fault 

tolerant as any single fault, hardware or software, plus any set of errors, such as operational 

errors or SEU induced errors, which are not considered faults. There are even significant 

differences in the definitions of the terms used to describe the prevention and treatment of faults, 

such as fault management, fault protection, fault avoidance, or FDRIR (fault detection, response, 

isolation, and recovery). Representatives from various organizations are at times talking about 

the same thing and don’t know it, and at other times think they’re talking about the same thing 
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and are actually talking about very different things. These differences became so clear that one of 

the major suggestions for future work that came out of the workshop was to develop a taxonomy 

for fault management, either at an institutional level or across the industry. 

In addition to terminology differences across organizations causing difficulties in fault 

management design, terminology can also cause problems within the same organization. In some 

cases, multiple missions will use similar terminology, but with slightly different definitions. This 

can lead to confusion, misunderstandings, and errors in design. At least one major spacecraft 

anomaly could have been avoided if the terms used in the design had been strictly defined and 

clearly stated to all team members to avoid various interpretations. 

While using the same terminology will help communications among team members, another 

communications issue that was brought up several times was an inability to visualize these 

complex systems. Fault management systems have become so complex that visualizing all the 

monitors, responses, and where everything is getting done is becoming very difficult. It is also 

extremely difficult to visualize how a change in the system (monitor, response, or parameter) 

will affect the rest of the system. While visualizing the system is difficult for everyone, it is 

especially difficult for systems engineers who are not software specialists and who, as discussed 

earlier, are often the ones designing the implementing the monitors and responses. It is important 

to develop and use tools, such as diagrams, that help with visualization. Telemetry visualization 

tools, that show what happened, in what order, and what state the telemetry is in (red, yellow, 

green) can also help operators to use these complex systems more efficiently. 

One of the themes that ran throughout the case study presentations was the concept that fault 

management systems are required to be much more complex for deep-space missions than for 

Earth orbiting missions. Deep-space missions are generally long-life missions, with large periods 

of time in which contact with the ground is not possible. This greatly affects the fault 

management system. Deep-space probes have more responsibility placed upon the autonomy, 

due to their inability to rely upon ground operators for near/non-time sensitive anomalies. Since 

the on-board autonomy for deep-space missions must handle long periods of no contact, they 

must be more self-sufficient. In addition, many deep-space missions have time-critical events 

that cannot be avoided. This leads to a requirement for the fault management system to be fail-

operational and not simply fail-safe during critical events. For both mission classes, however, it 

seems that health and safety are key, within the limitations of the redundancy and cross-strapping 

included with the hardware design. For any critical hardware subsystem, autonomous 

redundancy management is needed. 

In addition to discussing issues that are common in the design process, the case study 

presentations also revealed several design guidelines that apply to all missions across the 

industry. The first of these design guidelines is to always provide a safety net, even if a specific 

fault has not been identified. Even if you haven’t identified an exact failure mechanism, you 

need to design a way for the system to fail safe in every situation. Even when failure modes have 

been identified, the knowledge of those failure modes will always be limited, and unexpected 

situations can occur. Therefore, it is important to put in rules that will protect the spacecraft from 

known dangerous situations, even if a fault has not been specifically identified that can lead to 

that exact situation. For all missions, the safing recovery procedures must be properly tested and 

practiced for rapid execution, if needed. The safing recovery procedures should include what 
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data will be needed to identify and recover from an unknown fault and must, therefore, be 

recorded and stored. 

While the complexity of future missions is driving the complexity of fault management systems, 

another design guideline that was mentioned several times was to keep the design as simple as 

possible and revert to fundamentals whenever possible. Although a high level of complexity is 

inherent in the FM of deep-space missions of this type, whenever possible, the simplest design is 

often the best. An example was given of a very complex analysis that was finessed to increase 

science return. In the end, the analysis was incorrect and a spacecraft anomaly occurred. 

Whenever dealing with extremely complex problems, it is a good idea to make simplifying 

assumptions and not forget the fundamentals of what the design is trying to achieve. 

The final design guideline from the case study presentations was to be careful of the limitations 

of redundancy. Performance on a backup system could be worse than performance on the prime 

system, even with a minor fault in the prime system. In addition, calibrating the backup could 

cost time and/or other resources. Therefore, even when redundant systems are available, it is 

often preferable to remain on a prime system with a minor flaw. Consequently, autonomous 

changes to redundant systems should be treated with caution. 

The Case Studies covered a number of key points that were discussed in the subsequent breakout 

session. The key points from these presentations are summarized below: 

• FSW Development Problems, due to various factors, including inadequate requirements 

(insufficiently specified, incomplete, erroneous re-use application) — getting worse with 

complexity growth... 

• Unforeseen impacts of faults... 

• FP Architecture features which permit in-flight modification are invaluable... 

• In-flight failures can be hard to predict - better to protect functionality... 

• Limitations on redundancy. 

• Flexible & Re-configurable FM is powerful. 

• Flat architecture can be problematic; unexpected interactions. 

• Scope of testing is daunting; tough to properly scope to get most bang for buck. 

• Manage FP thru lifecycle; programmatic and SE approach. 

• Build-in from bottom, KISS. 

• Organizational and Process issues lead to problems with FM systems. 

• Due to separation between analysts and designers (not as much of factor at JPL due to FP 

SE position seen as 'cross-disciplinary' — and they often do the FTA, FMEA 

themselves)... 

• FM has no organizational home in NASA; not recognized as a discipline. 

• FM Architecture Flexibility enables operators to modify. 

• Use High Fidelity testbeds, with easy fault injection capability (often opposed notions). 

• Test products with realistic initialization prior to upload. 

• Improve Visibility Tools. 
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• FM Scope is more than just on-board FSW... 

• Need FM Engineer throughout lifecycle...assign early in program. 

• Include Flight System robustness to operator error (industry stance differs from customer 

stance). 

• ITL Definition for FM Scenario tests is tough to establish and complete. 

• Varying Test initial conditions is very important. 

• Flexibility is a friend and foe. 

• Flat architectures do not up scope well — lead to emergent behaviors. 

• Visibility for diagnosis is important. Tools to quickly assess the data. 

• Visualization tools are needed to see FM execution behavior. 

• Architecture features to support quick FM changes is important. 

In summary, the take-away themes captured during the Case Study Presentations are listed 

below. 

1. FM Behavioral/Design Flaws not always detected during testing effort. Better tools to 

analyze test results will help catch problems which are not readily obvious. May be 

related to organizational issues. 

2. Flexibility — A friend and foe... 

3. Consider FM SE earlier in development schedule. 

4. FM SE staffing not properly budgeted or scoped. 

5. Misapplication / bad assumptions about heritage. 

6. Terminology Confusion. 

7. FM Complexity differences between Earth orbiters and Deep Space. 

8. Common Design Guidelines — Safety Net, Develop/Test Safing Recovery Procedure, 

KISS, redundancy limitations. 
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VII Appendix C: Breakout Sessions 

Day two of the Workshop was dedicated to a discussion session to enable the participants to 

discuss the issues presented in the Case Studies on the previous day and to suggest additional 

issues that were relevant to the Workshop. The goal of the Breakout Sessions was to distill the 

information to uncover the root causes of the issues. The end products were to identify lessons 

learned, best practices, and opportunities for investment that would benefit future missions when 

designing FM systems. 

The Breakout Sessions were organized around three focus areas: FM Architectures, FM V&V, 

and FM Practices, Processes and Tools. The following subsections describe an overview of each 

of the three Sessions. 

A. Architectures Breakout Session 

The Fault Management Architectures Breakout Session was chaired by George Cancro from 

JHU/APL, with support from Adrian Hill from JHU/APL, Kevin Barltrop and Michel Ingham 

from JPL, and Tim Crumbley from MSFC. 

1. Scope/Goals 

The goal of the Architecture session were as follows: 

• To develop the principles, requirements, and features of a good fault management 

architecture for unmanned deep-space vehicles though surveying the current state-of-

practice to understand current flaws and essential features. 

• To  develop the appropriate roles of hardware and software, including functional and 

physical redundancy. 

• Understanding the effect of architectures on process, testing, verification, and operations. 

The Fault Management Architecture breakout session group included leading experts from 

NASA and industry in the area of spacecraft FM Architecture. Lessons learned were gathered 

through a process of group discussions and small focus groups in the areas of FM architectures 

state of the practice, principles of good FM architectures, H/W and S/W interactions, and the 

effect of FM architectures on process, V&V, and Operations. 

2. Focus Areas and Discussion Questions 

The following focus areas and general questions were posed to motivate discussion in the 

breakout session: 

1. State of the Practice — Collect and document current state-of-practice across industry 

and NASA. Try to develop a "family tree" of systems. 

! What requirements have driven your FM Architecture to be as it is today? 

! What are the essential features of your current FM Architecture? 

! What is the biggest flaw in your current FM Architecture? 
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2. Features, Requirements and Principles for FM Architectures — Collect and 

document the features, requirements and principles that should be core to a good FM 

Architecture. 

! What basic principles and/or requirements should all FM architectures have? 

! What are the features that Operators desire in FM Architectures? 

! What are the features that Testers desire in FM Architectures? 

3. H/W and S/W interaction — Discuss and Document the appropriate roles of H/W and 

S/W as well as how redundancy should be used. 

! What are the roles of hardware and software in your architecture? 

! What should be used to drive your hardware-software allocation? 

! What is the appropriate use of physical and functional redundancy? 

4. Effects on Process, V&V and Ops — Discuss and Document how FM Architectures 

affect these areas and how these areas effect FM Architectures, both beneficially and 

adversely. 

! Can you name any beneficial impact that FM Architectures have had on Process, 

V&V or Ops? 

! How has FM architecture effected testing in the past? 

! Can process and architecture be more closely coupled? 

3. General Observations on FM Architectures 

The implementation of FM architectures within the software domain is very similar across 

NASA, JHU/APL, and industry. Just as requirements tend to follow certain themes, fault 

management software architectures are quite similar across NASA, JPL, APL, and industry. In 

general, software architectures follow the natural division between fault detection and fault 

response. Within both detection and response, projects have implemented systems that can be 

easily categorized. 

FM architectures can be easily categorized using six basic concepts: fault detection can be either 

distributed or central; fault response is either distributed or central and either parallel or serial. In 

practice, though the language describing architectures varies, most systems appear to employ all 

of these methods at some level. 

Fault detection methods tend to be very similar. Telemetry is collected from assemblies and 

subsystem functions and compared against an acceptable value range to determine if the 

assembly or function is behaving as expected. To filter for transient data values and false 

detections, persistence schemes are implemented that check that a telemetry point is consistently 

in violation for some reasonable period. 

Fault detection might be implemented by a central monitor that executes independently of the 

rest of the system – sometimes even as a separate software object, and in one architecture, on a 

separate processor.  A more common approach appears to be distributing fault detection 

throughout the system:  local hardware or low-level software performs checks on telemetry at the 

collection point and reports faults to the appropriate handler. 
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Fault responses are usually simple, self-contained command blocks that address a single fault. 

They are implemented either as simple serial command blocks or a logic chart with some 

conditional execution. In some cases, for extra flexibility, a logic chart is used to determine the 

command block to run, but only the simple command block is used to configure the system. 

Fault response can be categorized as distributed or central, similar to detection. Responses are 

sometimes implemented locally, executing within the hardware or software object that detects 

the fault. Local responses are useful when a fault response requires fast turnaround, but because 

distributed response also means that responses are run in parallel without any arbitration, 

distributed architectures can result in extra complexity and unexpected emergent behavior. More 

frequently, responses are managed by a central executor that might allow parallel execution of 

command blocks, but that can also be used to limit responses to serial execution for simplicity. 

The central executor also provides the benefit of prioritization of responses, and arbitration 

between responses if two responses require conflicting system resources. 

The majority of architectures in practice appear to use a combination of these concepts. Fault 

detection at the component level is usually distributed in the hardware or component-level 

software, along the lines of the system’s functional decomposition, while system-level fault 

detection is performed in higher, more central parts of the system. Some systems will use local 

responses for limited reconfigurations or masking, but most of the time the local detector will 

report the fault to a central executor that will collect the reported faults and manage execution of 

responses. Responses are command blocks that will execute in serial or limited parallel fashion. 

None of the information provided suggests an architecture that allows unlimited parallel 

execution of faults, whether as a limitation of the system or as a design choice. 

One extreme example of a mixed architecture implemented two separate executors that share 

fault management responsibilities, but each system follows a distributed detection/central 

response scheme. One response engine uses parallel response execution because of the criticality 

of completing responses quickly, while the other limits to serial. 

One additional complication to the FM architecture stems from the common need to fail 

operational: re-entrant critical events. Should a fault require the system to halt execution of a 

critical event, the system will need to have the capability to resume execution after the fault has 

been addressed. This basic concept arose in a few responses and was implied in others, but 

appears to be, like the other elements of FM architectures, a common problem. 

B. Fault Management Verification and Validation 

The FM V&V Session was chaired by Chris Jones from JPL and Ray Whitley from GSFC, with 

support from Mike Trela and Brian Bauer from JHU/APL, Cathy White from MSFC, Manuel 

Maldonado and Dave Everett from GSFC, and Arden Acord from JPL. 

1. Scope/Goals 

This FM V&V Session addressed the current state of verification and validation of fault 

management systems. Methods, completeness (coverage), escape prevention, and the role of 

V&V in the development process were examined. Specifically, the relationships between V&V 
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and FM architecture and FM design processes were discussed. An assessment of current 

practices was made, and suggestions for future approaches were described. 

In the realm of FM, the process of V&V is the tool used to flesh out the probable fault areas, 

particularly those that are not apparent from the design process. This process should be one not 

simply where the ability to meet requirements in a single instant is demonstrated, but rather 

where the ability to prevent events from disabling the system from meeting the requirements 

(i.e., how can we break the system through our testing process?). 

Lessons learned for Verification and Validation were gathered through a process of group 

discussions with representatives from NASA, DoD, and industry. 

For clarity in terminology, the following definitions are required. 

• Verification: Demonstration that an end product generated from product implementation 

or product integration conforms to its design solution definition requirements as a 

function of the product-line life-cycle phase and the location of the WBS model end 

product in the system structure. (NPR 7123.1A) [“Did you build the product right?] 

• Validation: Confirmation that a verified end product generated by product 

implementation or product integration fulfills (satisfies) its intended use when placed in 

its intended environment and to ensure that any anomalies discovered during validation 

are appropriately resolved prior to delivery of the product (if validation is done by the 

supplier of the product) or prior to integration with other products into a higher-level 

assembled product (if validation is done by the receiver of the product). The validation is 

done against the set of baselined stakeholder expectations. (NPR 7123.1A) [“Did you 

build the right Product?”] 

From a fault management perspective, the V&V process serves to ensure compliance with 

requirements and to bring out potential faults as early as possible in the system development 

process. 

2. Focus Areas and Discussion Questions 

! What does our in-flight experience with fault management tell us about current V&V 

methodologies? 

! Actual in-flight behavior (commanded/degraded) was not anticipated. 

! Tripped up by untested (or untestable) features? 

! Limited by testbed fidelity? 

! Do we really “test as we fly?” 

! What does our system V&V experience tell us about our architectures, design, design 

capture methodologies and project lifecycle? 

! Limited test coverage due to broad design space or Earth-based limitations. 

! Architecture created a “forest” of trees or lack of coherent architecture. 

! Poor documentation of design prevented thorough test program. 

! Late deliveries and hardware/software incompatibilities. 
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! What are the V&V drivers? 

! Design complexity. 

! System performance requirements. 

! Fail-op requirements. 

! COTS hardware/software, etc. 

! How do modeling and simulation support FM V&V? 

! Are the technologies adequate? 

! What is the desired future state? 

! What is the appropriate scope of a FM V&V program? 

! Test coverage. 

! Incompressible test list make-up. 

! Hardware/software, component/subsystem/system, simple fault scenarios/stress 

testing. 

! How do we know when we’re through? 

C. FM Development Practices, Processes & Tools (P/P/T) 

Dave Watson (JHU/APL) chaired the FM P/P/T Session, with support from Brad Burt (JPL), 

Bob Henderson (JHU/APL), and Jonathan Mead (Northrop Grumman). 

1. Scope/Goals 

The Practices, Processes and Tools breakout session aimed to address the issues associated with 

tools and development methodologies or processes in the design and development of spacecraft 

fault management (FM) subsystems. Such subsystems, by their nature, present a particular 

challenge in development as they interact with all other spacecraft subsystems and are dependent 

on them during overall system development. The role of fault management designers and 

developers on spacecraft development teams, the processes they follow, and the tools they use 

was a particular emphasis of this session. The focus was on what organizational constructs and 

processes might have been particularly successful or problematic in the past and what tools have 

proven successful in analysis of FM requirements, developing FM logic, and then implementing 

and testing that logic. 

For the purpose of the discussion, the definition of “tools” ranged from early analysis 

methodologies, such as event sequence diagrams and fault tree analysis, through FMEA and 

traditional requirements allocation systems into development frameworks and implementation 

languages. 

2. Focus Areas and Discussion Questions 

A set of general questions were posed to motivate discussion in the breakout session: 

1. What tools or processes are used to estimate the cost and schedule for FM subsystem 

analysis, design and development? What are the metrics for describing FM complexity? 
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2. What design tools are traditionally used in the different phases of FM analysis and 

development? 

3. What tools are currently under investigation at your organization? What are the 

evaluation criteria and experiences with these potential tools? 

4. Would it be feasible to link fault analysis, fault management design, testing, 

implementation, and maintenance through a tightly integrated tool set? 

5. To what extent should system and software engineering process be driven by available 

tools? 

6. Do standard development process specifications address FM in particular? What are the 

benefits and limitations of current process specifications to FM development? 

7. Are particular organizational constructs beneficial or problematic in the development of 

FM subsystems? 

8. Are there particularly beneficial or problematic aspects of mission operations interaction 

with onboard FM? 

9. What are the implications of FM complexity/simplicity that factor into mission 

operations (risk and cost)? Should FM logic provide defense against errors introduced in 

operations? 

10. What are the reusable (mission-independent) aspects of FM process and design? 

3. Session Attendance 

The session was well attended, with 33 individuals representing a broad spectrum of NASA, 

civilian, and military space domains. Represented organizations were as follows: 

• NASA HQ, JPL, MSFC, ARC. 

• Naval Research Lab. 

• Lockheed Martin. 

• Orbital Sciences. 

• Northrop Grumman. 

• Interface and Control Systems. 

• Aerospace Corporation. 

• Draper Lab. 

• General Atomics. 

• Ball Aerospace. 
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VIII Appendix D: Invited Speakers 

During the workshop, we invited three speakers from academia to present to the FM community. 

The purpose of these presentations was to provide a different perspective and some insight into 

future directions. We invited researchers from academia who were leaders in the fields most 

relevant to the focus areas of this workshop: namely, software architecture, V&V, and a unified 

approach to FM designs. 

The first day included a lunchtime presentation from Gentry Lee on the historical perspective of 

fault management systems and what we should be striving for in the future. 

On Day 2, Dr. David Garlan, Professor of Computer Science and Director of the Software 

Engineering Professional Programs at Carnegie Mellon University, gave a talk entitled 

“Improving System Quality through Software Architecture.” Dr. Garlan is considered to be one 

of the founders of the field of software architecture and, in particular, formal representation and 

analysis of architectural designs. Over the past decade and a half, there has been increasing 

understanding about the role that software architecture can and should play in mastering the 

complexity of complex software system design, providing a basis for early analysis and 

prediction, ensuring that systems retain their structural integrity over time, and enabling re-use 

and dramatic cost reductions. In this talk, Dr. Garlan outlined some of the key insights that drive 

the field and identified some of the salient features of software architecture as they relate to 

improving the dependability of software-based systems, focusing on techniques to (a) express 

architectural descriptions precisely and unambiguously; (b) provide soundness criteria and tools 

to check consistency of architectural designs; (c) analyze those designs to determine implied 

system properties; (d) exploit patterns and styles, and check whether a given architecture 

conforms to a given pattern; (e) guarantee that the implementation of a system is consistent with 

its architectural design; and (f) support self-healing capabilities. 

With respect to fault management, Dr. Garlan identified a number of specific ways in which a 

more disciplined approach to software architecture in NASA might help: 

• Improve Communication: Architecture helps make design commitments explicit; 

architectural specifications can make that intent precise. 

• Reduce System Complexity: Done properly, architecture designs would address FM as 

top-level architectural concern using standard, uniform, and comprehensive principles. It 

would ensure that fault management was part of the essential design process (not added 

later as a separate effort). It would also open to discussion the fundamental nature of FM 

– for example, questioning the common belief/practice that FM should not be considered 

as part the normal control behavior of the system. 

• Improved V&V: The use of architecture-based analyses would allow NASA engineers to 

reason about FM coverage, completeness, correctness, timing, subsystem interaction. It 

could also help ensure conformance in code through generation, refinement or 

conformance analysis. 

• Reduce Brittleness: Architectures can be used to design FM architecture that is resilient 

to change. Complex interactions can be done early using formal models and model 

checking tools. 
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• Reduce Cost: Architecture can be used as a basis for: 

! Generating code automatically from models. 

! Codifying and reusing architectural principles that have proven integrity. 

! Knowing the limitations of re-use. 

! Amortizing design efforts over families of systems. 

While these potential benefits of a disciplined and effective approach to software architecture 

could have a significant impact on FM, currently there are a number of institutional impediments 

that make it difficult for NASA to embrace these techniques. These include: 

• Inappropriate modeling techniques: For example, in many project at NASA the view is 

that “Software architecture is just boxes and lines,” “Software architecture is just code 

modules,” “A layered diagram says it all.” 

• Misunderstanding about role of architecture in product lines and architectural re-use: For 

example, today many view product lines as simply a re-use library, failing to recognize 

the essential role that architectures play in process. 

• An impoverished culture of architecture design: Some symptoms of this are: (a) weak 

standards for architectural description and analysis; (b) lack of institutionalized 

architectural reviews early in the design process when they can be most productive; (c) 

lack of a common vocabulary of architecture and expectations about what an architecture 

should accomplish; and (d) a lack of a solid architecture education among engineers. 

On Day 3, Dr. John Rushby, Program Director for Formal Methods and Dependable Systems 

within the Computer Science Laboratory at SRI International, spoke of “New Directions in 

V&V: Evidence, Arguments, and Automation.” Dr. Rushby’s research interests center on the use 

of formal methods for problems in the design and assurance of secure and dependable systems. 

In his talk, Dr. Rushby explained that the central problem in V&V is to anticipate all possible 

scenarios that can arise in operation of the system and to establish that it behaves appropriately in 

every one of them. When the system is composed of interacting subsystems (such as a 

spacecraft), the number of possible scenarios is exponential in the number of components, and 

when continuous variables (such as time) are involved, it can become unbounded. 

Testing and simulation can examine only a fraction of such a huge number of scenarios. Dr. 

Rushby described how automated techniques based on formal methods and model-based 

descriptions can allow all possible scenarios to be considered and he explained their relationship 

to traditional methods such as FTA and FMEA. He also described how automation can be 

extended to test case generation and runtime monitoring. These new methods differ substantially 

from standards-based approaches to assurance such as DO-178B and are best employed in a 

goal-based approach that makes arguments and evidence explicit. 

Our third invited speaker from academia was Dr. Brian C. Williams. Prof. Williams is a 

Professor of Aeronautics and Astronautics at the Massachusetts Institute of Technology, as well 

as the Director of the Autonomous Systems Laboratory (ASL) and a member of the Computer 

Science and Artificial Intelligence Laboratory (CSAIL). Prof. Williams’ research concentrates on 

model-based monitoring and fault management and on model-based autonomy: the creation of 

long-lived autonomous systems that are able to explore, command, diagnose, and repair 
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themselves by employing online reasoning. This work has been employed to develop a wide 

range of fault robust and autonomous systems, including deep-space probes, automobiles, 

copiers, naval ships, autonomous air, ground and undersea vehicles, and walking robots. 

Similar to the problem of Verification and Validation addressed in Dr. Rushby’s talk, the fault-

protection systems engineer has the challenge of anticipating all possible fault scenarios that can 

arise in operation of the system and to establish fault responses that behave appropriately in 

every one of them. The number of possible scenarios is again at best exponential in the number 

of components. 

Professor Williams’ talk, entitled “Model-Based Monitoring of Complex Systems,” confronted 

this challenge through four parts. The first part of the talk focused on NASA’s trend towards 

developing increasingly ambitious missions, which need to operate through failure without 

moving into a ‘safing’ mode. This requires software systems that are able to maintain function 

despite several types of disturbances and failures, by employing a range of recovery 

mechanisms, such as dynamic scheduling, hardware reconfiguration, and hybrid control. 

Achieving the desired level of fault robustness in a cost-effective manner requires new 

programming languages, architectures, and design practices. Professor Williams introduced one 

such programming paradigm, called Model-based Programming, and a corresponding language, 

called RMPL. In this approach, a programmer writes a control program, which specifies a 

system’s intended behavior in terms of constraints on the systems’ state over time (e.g., “Engine 

A thrusting in 2 hrs”), and a plant model, which specifies the behavior of the system being 

controlled. An RMPL program executive then employs the plant model 1) to map the state 

specification provided by the control program to control actions, 2) to confirm, based on sensor 

information, that the intended states are achieved, and 3) to diagnose and recover when failures 

occur. In the talk, example RMPL programs were demonstrated on two different types of 

systems: a spacecraft and a humanoid robot. 

In the second part of the talk, Professor Williams provided a tutorial on the foundations of the 

model-based diagnostic approach. Model-based diagnosis performs systems wide diagnosis 

based on a model of a system and observations from the system’s sensors. The model is a 

modular description of a system, such as a hardware schematic and a set of component models. 

These component models include descriptions of both correct and faulty modes of behavior, but 

do not presume complete knowledge of a component’s failure modes. Given a set of 

observations, model-based diagnosis performs a system-wide diagnosis that identifies 

symptomatic behavior, identifies faulty components, proposes likely failure modes for these 

faulty components, and identifies components that are failing in a novel manner. Features of 

model-based diagnosis include diagnosing multiple faults, un-modeled fault behaviors, sensor 

faults, intermittent faults, and faults with delayed symptoms. Likewise, model-based methods 

exist for automatically generating hardware reconfigurations and repair. 

In the third part of the talk, Professor Williams examined rule-based fault management 

architectures that have been employed in a range of missions, such as Cassini, NEAR, and 

Messenger. These architectures have proven quite effective in the past; however, for current and 

future missions, mission complexity has resulted in increasingly large rule sets that collectively 

are becoming difficult to analyze and debug. In this part of the talk, he discussed how model-

based diagnosis algorithms (the MiniMe system) have been adapted to automatically generate 
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diagnostic rules, which can be executed in a manner similar to previous rule engines, but avoids 

the problems of rule interactions of these earlier approaches. 

In the fourth and final part of the talk, Professor Williams described the current state of the art in 

model-based methods for runtime monitoring and diagnosis of systems with complex behaviors. 

One suite of methods takes as input models of both software and hardware components and uses 

them to detect symptoms manifest in the software, as well as the hardware, and to isolate both 

software and hardware failures. Software models are specified in a hierarchical automata-like 

language in the spirit of State Charts, a language that is frequently employed by systems 

engineers. A second suite of methods takes as input component models that include a mix of 

discrete and continuous behaviors in the form of hybrid models that combines discrete stochastic 

automata and ordinary differential equations. These hybrid monitoring and diagnosis methods 

can be used during prognosis to detect the onset of failure or to detect incipient failures, such as 

small leaks. A final suite of active control methods were presented that improve a system’s 

ability to isolate failures by placing the system in states in which sensor information 

disambiguates between likely failure models, while ensuring that system function is maintained. 
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IX Appendix E: Poster Session 

A. Poster Session Summary 

One of the primary goals of this workshop was to explore emerging technologies and discuss 

future opportunities for investments to improve fault management for future missions. With this 

in mind, a poster session was held for the final two days of the three day workshop. The poster 

session provided an opportunity for technologists to present concepts and technology 

developments relevant to the future of FM. In total, 13 posters were presented. The titles and 

authors of all the posters are shown in Table E1 and the abstracts for all of the posters are 

provided in Section B of this Appendix. In general, the posters focused on a few major areas: 

V&V, reliability, flight software and fault protection architectures, and case studies. 

Table E1: Poster titles and authors. 

Poster Title Author(s) 

Automatic Testcase Generation for Flight Software D. Bushnell (RIACS/NASA ARC),  
C. Pasareanu (Perot Systems/NASA ARC), R. MacKey (JPL) 

Criticality-Based Design of Fault Management Software D. Scheidt (JHU APL) 

Design and Validation of Robust Fault Tolerant Systems:  
Markov Chains Combined with Dynamic Modeling 

R. Bradshaw (Draper Laboratory),  
J. Zinchuk (Draper Laboratory) 

ExecSpec: Visually Designing and Operating a Finite State 
Machine-based Spacecraft Autonomy System 

R. Turner (JHU APL), S. Hooda (JHU APL),  
J. Gersh (JHU APL), G. Cancro (JHU APL) 

Fault Management for an Autonomous Robotic Satellite 
Grappling Mission 

J. Lennon (NRL) 

Fault Protection in a Goal-Based Control Architecture D. Dvorak (JPL) 

Implementation of Integrated System Fault Management 
Capability 

F. Figueroa (NASA SSC), J. Schmalzel (NASA SSC),  
J. Morris (Jacobs Technology), H. Smith (Jacobs Technology),  
H. Smith (Jacobs Technology), M. Turowski (Jacobs 
Technology) Intelligent Systems Health Monitoring for Autonomous 

Lunar Exploration:  
A Case Study 

J. Frank (NASA ARC) 

Run-Time Flight Software Modification for Fault 
Management 

A. Murray (JPL) 

The Nemesis Research Project K. Barltrop (JPL) 

Timeliner Architecture for Fault Management R. Barrington (Draper Laboratory) 

Tool-Supported Verification of Contingency Design R. Lutz (JPL/Caltech & ISU), A. Patterson-Hine (NASA ARC) 

Verification of Model-based Software Systems for Space 
Applications 

G. Brat (USRA RIACS) 

 

Several of the posters focused on future directions of V&V for fault management. USRA RIACS 

and JPL have partnered together to develop technology for automatic testcase generation for 

flight software. The enabling technologies for the approaches presented are model checking and 

symbolic execution. Model checking is an automated technique for software verification. 
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Symbolic execution evaluates programs with symbolic values and represents variable values as 

symbolic expressions. 

JPL is working on a generalized framework for systems validation that can be applied to both 

traditional and autonomous systems. The Nemesis research project is developing the framework, 

which consists of an automated test case generation and execution system that rapidly and 

thoroughly identifies flaws or vulnerabilities within a system, using a combination of genetic 

algorithm optimization, goal-seeking algorithms, and war games. The project should result in 

earlier and more complete identification of flaws compared to current approaches. 

JPL, ISU, and NASA ARC have partnered together to develop a technique to perform early 

investigation of anomalous behaviors and early, integrated modeling of the software system and 

its faults. The technique uses model-based verification of the contingency design and assists 

developers in identifying and remedying design gaps. Tool-supported verification of contingency 

design facilitates fault management by helping reduce fault-related re-works during testing and 

by making the design more robust to operational contingencies. 

USRA RIACS presented a poster focused on advanced V&V techniques for model-based 

software, especially planning systems. The systems are broken into two distinct parts – the 

domain model and the planning model. The planning engine can be verified in terms of its 

mechanisms using automatic proving techniques, and only needs to be validated once. The 

domain models capture knowledge specific to a given problem and each new domain model 

needs to be validated separately. 

In the area of reliability analysis, Draper Laboratory has developed a new tool set for dynamic 

reliability analyses using a Markov based modeling approach. The new software tool, 

“PARADyM” uses a capability to dynamically model system behavior while enumerating 

potential fault combinations and their resulting effects on the system. PARADyM provides 

estimated reliability as well as a sensitivity analysis showing weak aspects of the system. 

Two posters focused on the development of new fault protection architectures. NASA SSC and 

Jacobs Technology are working on a comprehensive approach to implement integrated fault 

management. This effort encompasses maturing several necessary technologies including 

intelligent sensors and software environments. A set of tools and objects have been developed to 

allow users to model systems for integrated fault management. These models can represent every 

element in a system of systems as an intelligent element, including process models that define 

relationships among elements. 

JHU APL is developing “intelligent control” systems to devise a fault management strategy at 

run-time. This approach examines the comparative utility of various fault management 

algorithms to determine algorithm effectiveness as a function of system complexity and 

dynamics. This analysis can then be used to select optimal algorithms for a given scenario, and 

can be performed autonomously at run-time. This allows for the design and construction of a 

hybrid fault management subsystem that switches among various algorithms to maintain optimal 

fault response. 
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Several additional posters were presented on flight software architectures that will enhance fault 

protection systems. JHU APL is exploring a new visual programming approach to autonomy 

development based on a combination of finite state machines and data flow diagrams to form an 

executable specification. This platform allows users and developers to construct reusable 

diagrams of state machines and link them together to form autonomy components and 

subsystems in a visual environment. The platform has the capability to upload a specification of 

the finite state machine directly to the spacecraft at any time during development or operations. 

Additional visualization tools on the ground allow the user to display the spacecraft behavior by 

highlighting portions of the state-transition diagram. 

Draper Laboratory has developed a scripting utility that can provide a flexible capability to 

respond to changes in performance and configuration. The Timeliner sequencer allows for 

automation of re-configuration and/or re-direction of objectives after an unexpected failure. 

Timeliner was recently utilized on the DARPA Orbital Express (OE) program to perform the 

Mission Management function, control the subsystem functions, monitor for failures, and cause 

appropriate contingency responses to execute. 

JPL is working on an object-oriented and component-based flight software design that is based in 

C++. The design provides the capability to replace or add components of the flight software at 

run-time, without having to reboot the system. This allows for easy uplink and installation of 

new FSW logic, including updates to fault protection and/or entirely new fault protection logic. 

This would be especially useful in the event of a change in the system behavior due to a fault or a 

change in the environment that was not anticipated. 

In addition to pure flight software architectures or pure fault management architectures, one 

poster focused on a new architecture that integrates flight software and fault management into a 

single, unified architecture. JPL has developed a goal- and state-based control architecture that 

handles execution of nominal activities and fault protection. Given a scheduled plan expressed in 

the form of a “goal network” and alternative execution options captured in “goal elaboration 

tactics”, the control system monitors the execution of goals and decides on what actions to take if 

a goal is not met. This architecture simplifies design and verification because it uses the same 

mechanisms for nominal control as it does for fault protection. 

Finally, two posters focused on case-studies of particularly challenging future missions or 

simulations of future missions. NRL is working on the Front-End Robotics Enabling Near-Term 

Demonstration (FREND) program, which requires the autonomous grapple of a simulated 

geostationary satellite. This mission has two major challenges from a fault protection standpoint. 

The first challenge is events which would or would not be considered faults at different points in 

the mission. The second challenge is that critical autonomous tasks, such as grappling, are not 

compatible with classic fault handling, such as safing the spacecraft. 

NASA ARC has conducted a software simulation of an autonomous lunar lander. For this 

simulated mission, Intelligent Systems Health Monitoring (ISHM) was in integral part of the 

software design. JPL’s Spacecraft Health Inference Engine (SHINE) was used in a fault 

detection role, and NASA ARC’s Hybrid Diagnosis Engine (HyDE) was used for fault isolation. 

The control software was integrated with a physics simulation of lunar surface operations, and 

successfully demonstrated detection of, and recovery from, a variety of faults. 
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David Bushnell, RIACS/NASA Ames Research Center 

Corina Pasareanu, Perot Systems/NASA Ames Research Center 

Ryan MacKey, Jet Propulsion Laboratory 

The TacSat3 project is applying Integrated Systems Health Management (ISHM) technologies to 

an Air Force spacecraft for operational evaluation in space. The experiment will demonstrate the 

effectiveness and cost of ISHM and vehicle systems management (VSM) technologies through 

onboard operation for extended periods. 

We present two approaches to automatic testcase generation for ISHM: 

1. A blackbox approach that views the system as a blackbox, and uses a grammar-based 

specification of the system's inputs to automatically generate *all* inputs that satisfy the 

specifications (up to pre-specified limits); these inputs are then used to exercise the 

system. 

2. A whitebox approach that performs analysis and testcase generation directly on a 

representation of the internal behaviour of the system under test. 

The enabling technologies for both these approaches are model checking and symbolic 

execution, as implemented in the Ames' Java Path Finder (JPF) tool suite. 

Model checking is an automated technique for software verification. Unlike simulation and 

testing which check only some of the system executions and therefore may miss errors, model 

checking exhaustively explores all possible executions. Symbolic execution evaluates programs 

with symbolic rather than concrete values and represents variable values as symbolic 

expressions. 

We are applying the blackbox approach to generating input scripts for the Spacecraft Command 

Language (SCL) from Interface and Control Systems. SCL is an embedded interpreter for 

controlling spacecraft systems. TacSat3 will be using SCL as the controller for its ISHM 

systems. 

We translated the SCL grammar into a program that outputs scripts conforming to the grammars. 

Running JPF on this program generates all legal input scripts up to a prespecified size. Script 

generation can also be targeted to specific parts of the grammar of interest to the developers. 

These scripts are then fed to the SCL Executive. ICS's in-house coverage tools will be run to 

measure code coverage. Because the scripts exercise all parts of the grammar, we expect them to 

provide high code coverage. This blackbox approach is suitable for systems for which we do not 

have access to the source code. 

We are applying whitebox test generation to the Spacecraft Health INference Engine (SHINE) 

that is part of the ISHM system. In TacSat3, SHINE will execute an on-board knowledge base 

for fault detection and diagnosis. SHINE converts its knowledge base into optimized C code 

which runs onboard TacSat3. 
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SHINE can translate its rules into an intermediate representation (Java) suitable for analysis with 

JPF. JPF will analyze SHINE's Java output using symbolic execution, producing testcases that 

can provide either complete or directed coverage of the code. 

Automatically generated test suites can provide full code coverage and be quickly regenerated 

when code changes. Because our tools analyze executable code, they fully cover the delivered 

code, not just models of the code. 

This approach also provides a way to generate tests that exercise specific sections of code under 

specific preconditions. This capability gives us more focused testing of specific sections of code. 
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David Scheidt, JHU Applied Physics Laboratory 

As a system, spacecraft are complex due to the large number of feasible system states that could 

be produced by one or more faults. Spacecraft complexity prevents both engineers and 

automated design tools from generating optimal stimulus-response rules for all feasible failure 

scenarios during design. This limitation requires fault management designers to choose between 

two of the attributes: correctness, completeness and timeliness, but not all three. Fault 

management systems currently in use on APL spacecraft are designed to be correct and timely, 

with spacecraft safing being used as a default response to unanticipated failure combinations. An 

alternative approach to fault management that has been used by NASA-Ames on DS-1 and APL 

on the Air Force MSX spacecraft is the use of “intelligent control”. Intelligent control uses an 

implicit or explicit system model to devise a fault management strategy at run-time. Soft 

computing, a general category of algorithms that includes fuzzy logic, neural networks and some 

forms of Bayesian belief networks are a well studied alternative to fault management. Selecting 

the appropriate fault management algorithm is an art, rather than a science. The effort described 

in this paper seeks to provide first-principles understanding of the comparative utility of various 

fault management algorithms, as well as providing insight into the optimal design of hybrid 

architectures and tailoring of fault management systems. The chief insight discussed is the 

recognition that algorithm effectiveness varies as a function of system complexity and dynamics. 

Further, this effectiveness may be expressed as an efficiency curve across these domains. The 

effectiveness curves from candidate algorithms may be overlaid to create a Pareto optimal 

surface which can, in turn, be used to select the optimal algorithms for a given scenario. We 

begin our discussion by defining metrics for fault management in terms of mission criticality. 

Mission criticality combines the probability that the spacecraft can satisfy a priori defined 

mission requirements with the time-sensitivity of the fault response. Formalisms for system 

complexity and system dynamics are then defined. These formalisms combine complexity theory 

and information theory, a key element of which is entropic drag, which is the rate at which 

information is lost do to unpredictable dynamics in a system. We show how reducing 

approximation error through high-fidelity representation can cause a net loss of knowledge and 

controllability due to the impact of entropic drag. We show how an analysis of system 

complexity and dynamics can be applied to algorithm performance models to select the optimal 

representational fidelity and optimal fault management algorithm. This analysis can be 

performed autonomously at run-time, allowing for the design and construction of a hybrid fault 

management subsystem that switches representational fidelity and algorithm to maintain optimal 

fault response. Finally we introduce criticality-based reasoning, a technique for designing 

intelligent control algorithms that uses mission-criticality as the primary fitness criteria by which 

solutions are examined. 
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Rich Bradshaw, Draper Laboratory 

Jeff Zinchuk, Draper Laboratory 

Fault tolerant design and fault management has become common place practice for deep-space 

and human space flight missions where poor or non-existent fault detection and containment can 

result in loss of mission, loss of mission critical hardware or even loss of human life. Using a 

Markov based modeling approach, Draper Labs has developed a new tool set for the 

development and testing of fault tolerant systems. The new software tool, “PARADyM”, brings 

forth a new capability to dynamically model system behavior while enumerating potential fault 

combinations and their resulting effects on the system. Using this information PARADyM 

provides the estimated reliability for the intended mission as well as a sensitivity analysis 

showing weak or overbuilt aspects of the system. This presentation will provide an overview of 

the Markov based approach in combination with an interactive demo of the PARADyM tool. 
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Russell Turner (JHU Applied Physics Laboratory) 

Sharjeel Hooda (JHU Applied Physics Laboratory) 

John Gersh (JHU Applied Physics Laboratory) 

George Cancro (JHU Applied Physics Laboratory) 

The increasing complexity of modern spacecraft autonomy systems makes it difficult for them to 

be completely understood by engineers, mission operators and domain experts during design and 

development as well as testing and flight operations. To address these problems, The Johns 

Hopkins University Applied Physics Laboratory is exploring a new visual programming 

approach to autonomy development based on a combination of finite state machines and data 

flow diagrams to form an executable specification. This allows autonomy developers to 

interactively construct reusable diagrams of state machines and link them together to form 

autonomy components and subsystems. This presentation describes our current work towards 

creating such a visual autonomy development environment, which we call ExecSpec. We 

provide an overview of the system, show how we address the visual complexity caused by 

multiple state machine systems, and show how mission operators could use such visual 

monitoring tools during flight to analyze onboard autonomy status. 

Finite state machine state-transition diagrams have been used on previous spacecraft autonomy 

projects; however, these have been translated into autonomy flight code by automatic code 

generators or by software developers, which removes flexibility for future change and severely 

limits re-use. In contrast, the ExecSpec development environment can output a specification of 

the finite state machine system itself which can be uploaded directly to the spacecraft at any time 

during development or operations. Once on-board, a generic FSM interpreter executes the 

specification and reports the status of its execution through telemetry to the visual tool on the 

ground, which displays the spacecraft behavior by highlighting portions of the state-transition 

diagram. In this way, ExecSpec serves as a visual tool allowing the developer to design, test, 

debug, and deploy, as well as monitor and modify the behavior, of a spacecraft autonomy system 

all within a single context. 

In addition, ExecSpec can support the rapid assembly of autonomy systems through a prototype-

instance methodology: individual finite state machines are encapsulated with well-defined input 

and output variables that can be interconnected to form networks of interacting finite state 

machines. These visual system components can be saved as libraries of component prototypes 

that can be used to instantiate and assemble new autonomy system diagrams; thus, increasing 

reusability of autonomy systems between spacecrafts and decreasing total development time. 
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Jamie Lennon, Naval Research Laboratory 

The Front-End Robotics Enabling Near-Term Demonstration (FREND) program requires the 

autonomous grapple of a simulated geostationary satellite. From a fault management perspective, 

we have two major challenges. First, events which are faults during some phases of the mission 

are nominal events in others. We address this through the use of a finite state machine-based 

Mission Sequencer which interprets flags sent by subsystem monitors based on the current state 

of the system. Second, lessons learned from the recently concluded Orbital Express mission 

included the observation that traditional spacecraft fault handling (e.g., system safing whenever 

any off-nominal event is detected) greatly complicates critical autonomous tasks, such as 

grappling or refueling. We are continuing to investigate system operations possibilities that will 

balance safety and mission performance, including multiple attempts to visually identify our 

grappling feature while in proximity to our customer spacecraft. 
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Daniel L. Dvorak, Jet Propulsion Laboratory 

Historically, fault protection has been designed as a separate, event-driven system that monitors 

conditions in a spacecraft and responds autonomously, taking over control from the nominal 

system. In effect, two control architectures are engineered to work together: an open-loop time-

based command sequencer for nominal activities, and a closed-loop event-driven control system 

for fault detection and response. This bifurcated approach has worked, more or less, but has 

always been difficult to engineer. One reason for the difficulty has been due to poor separation of 

concerns in design, as typified in threshold-and-persistency monitors used for triggering fault 

responses. Such monitors convolve state estimation with control, making it hard to tune the 

parameters of all such monitors to achieve the desired response in every situation. Another 

reason for the difficulty has been in the growing pressure to localize fault responses and thereby 

avoid disruption to unaffected activities. 

This poster shows how fault protection can be handled in a single, unified control architecture for 

nominal activities and fault protection, both of which are controlled by “goals” and “goal 

elaborators”. In this architecture, a goal is constraint on the value of a state variable over a time 

interval, and can therefore represent control objectives (e.g. slew the spacecraft to within epsilon 

of a given vector), dependencies (e.g. this device must be healthy), and flight rules (e.g. an 

instrument’s temperature must remain in a specified range). Every type of goal has an associated 

goal elaborator that produces, at planning time, a set of supporting goals (if any) needed for its 

achievement. After planning, the entire collection of goals, including parent-child relationships 

and temporal ordering dependencies, is organized in a goal network. During execution, each 

goal’s constraint is actively monitored, and if the constraint is ever violated — whether due to a 

fault or to unanticipated conditions — the goal failure is reported to the elaborator that produced 

that goal. The elaborator can make a choice, in the context of the parent goal’s objective and the 

current system state, to continue on a best effort basis, or respond with a new elaboration, or 

escalate the problem to its parent, or immediately invoke safing. 

This goal-based control architecture cleanly separates state estimation from control decisions and 

situates fault protection decisions within the context of the activities that are affected. Further, 

this architecture simplifies design and verification in that it uses the same mechanisms for 

nominal control as for fault protection. The net result is a control architecture that not only 

dispenses with the bifurcated approach to fault protection but also naturally allows for increasing 

levels of autonomy by virtue of its closed-loop control paradigm. 
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Fernando Figueroa, NASA Stennis Space Center 

John Schmalzel, NASA Stennis Space Center 

Jon Morris, Jacobs Technology (NASA SSC) 

Harvey Smith, Jacobs Technology (NASA SSC) 

Mark Turowski, Jacobs Technology (NASA SSC) 

Fault management can be focused on different goals. For example, on evaluating readiness of a 

system for a mission, or on diagnosing causes of anomalies, or predicting future anomalies. The 

focus of fault management (FM) at NASA Stennis has been to determine system health. 

FM is viewed as a capability that incorporates the following functions: (1) detection of faults, (2) 

diagnosis of causes, (3) determination of effects throughout a system, (4) prediction of future 

system anomalies, (4) Assessment of system health, and (5) user interfaces for integrated 

awareness by the operator(s) and users. However, our work has emphasized that all functions 

must reflect integrated approaches that exploit cause-effect relationships among elements in 

systems-of-systems (SoS). 

Significant effort has been devoted to mature technology areas needed for implementation of 

credible FM capability. These areas include: (1) architecture, taxonomy, and ontology based on a 

definition of a SoS as a hierarchical network of intelligent elements; (2) a software environment 

to implement Integrated System Fault Management, including tools to automate root-cause 

analysis; (3) intelligent sensors; (4) anomaly detection algorithms, approaches, strategies, and 

methodologies; (5) standards for interoperability and plug&play related to management of data, 

information, and knowledge (DIaK); and (6) user interfaces for integrated awareness. Based on 

these efforts, prototype implementations have been developed in operational testbeds. 

Intelligent sensors (physical and virtual) must have the ability to determine their own health (just 

as any intelligent element in the system must). In general, assessing fault condition is distributed 

throughout all system elements. Sensors deserve special attention, because often the most 

significant question asked when doing any type of inquiry on a system is if the sensors providing 

the information are believable. FM on sensors is especially critical, as they are crucial in the 

operation of any modern system with feedback control. We have approached sensor FM by 

considering a sensor to be a system itself. It uses local data, information, and knowledge (DIaK) 

to assess and manage faults; but it also accepts DIaK from the rest of the system to help it 

improve its fault assessment. 

The poster will describe a comprehensive approach to implement integrated FM, which is 

applicable to ground and space settings. The software environment used for FM is based on G2, 

which is a commercial product that includes tools geared for development of applications with 

embedded intelligence (object oriented compartmentalization and management of DIaK). G2 

includes an inference engine, network capability, gateways for communicating with products that 

adhere to standards (e.g. SQL, Allen Bradley programmable Logic Controllers, etc), and an 

engine for implementation of root-cause analysis. A set of tools and objects have been developed 

to make possible the building of models of systems for integrated fault management. These 
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models can represent every element in a SoS as an intelligent element, incorporate information 

and knowledge about each element, including process models that define relationships among 

elements, which are used for consistency checks that lead to detection of anomalies (failures). 

Generic root-cause trees have also been implemented for typical faults on sensors, valves, and 

other elements. These trees are re-usable like the majority of the object classes used to create the 

SoS models for integrated fault management. The software environment inherently supports 

evolution of the capability as more and better algorithms, models, etc. for FM become available. 
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Jeremy Frank, NASA Ames Research Center 

We conducted a short-duration, medium fidelity software simulation of an autonomous lunar 

lander designed for science missions. The mission design assumed the spacecraft would move on 

the lunar surface using the same software and hardware employed for descent and landing. 

While high degrees of on-board automation have proven themselves in a variety of recent flight 

experiments, such software is still considered a risk in many space missions. For this reason we 

chose a "separation architecture", in which we distinguished between traditional flight software 

functions (referred to as the Reactive Layer) and higher-order functions making use of 

automation technologies like Planners, Executives, and intelligent systems health monitoring 

(referred to as the Deliberative Layer). 

Intelligent System Health Monitoring (ISHM) software was an integral part of the software 

design. We employed the Jet Propulsion Laboratory's Spacecraft Health Inference Engine 

(SHINE) system in the Reactive Layer, and NASA Ames Research Center's Hybrid Diagnosis 

Engine (HyDE) in the Deliberative Layer. SHINE performs high-speed logical inference, and 

acts primarily in a Fault Detection (FD) role, while HyDE performs fault isolation using 

combinatorial search. In addition to these functions, each software component has self-test 

functions invoked by the Executive to detect software faults. Finally, SHINE was tasked to 

detect software faults corresponding to failures of the Deliberative Layer software. 

We integrated the control software with a medium-fidelity physics simulation of lunar surface 

operations, and successfully demonstrated detection of a variety of Main Engine and Attitude 

Control System faults, and detect and recover from simulated failures of the Executive. We also 

designed experiments to detect and recover from failures of one of the solar panels. Among our 

lessons learned, we describe experiences in system integration, software integration, and 

experiences in integrating multiple models. 
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Alex Murray, Jet Propulsion Laboratory 

This poster presents an Object-oriented and Component-based Flight Software (FSW) design 

that was developed in C++ for the instrument flight software of the Aquarius mission, along with 

a discussion of the advantages of this design for fault management. The Component-based 

design provides the capability to replace Components of the FSW at run time, or to add entirely 

new FSW Components at run time, without having to reboot the system. In terms of fault 

management, this capability provides a number of significant advantages: it allows easy uplink 

and installation of new FSW logic to perform additional monitoring of suspect hardware, 

software, or environment conditions, in support of diagnosis of a problem or suspected problem, 

or even for purposes of fault anticipation and prevention. New active fault protection logic can 

be easily installed. The capability to handle new commands or produce new telemetry can be 

easily installed. Being able to do this with no reboot is a tremendous operational advantage, 

because it can take a complex flight system many hours of operations time to get back to mission 

mode after a reboot. In addition, the ability to automatically recover from a suspended thread 

without rebooting, provided by this design, could make real-time fault protection in time-critical 

mission activities more robust. 

 



Spacecraft Fault Management Workshop Results 

71 3/27/2009 

*4+)L+%+,',)?+,+&/(4)H/$M+(#)

Kevin Barltrop, Jet Propulsion Laboratory 

Autonomous systems are more difficult to validate than traditional systems because they require 

more numerous and complex behaviors in order to operate self-sufficiently. The Nemesis 

research project was initiated to develop a generalized framework for systems validation that can 

be applied to both traditional and autonomous systems. The framework consists of an automated 

test case generation and execution system that rapidly and thoroughly identifies flaws or 

vulnerabilities within a system. By applying genetic optimization and goal-seeking algorithms on 

the test equipment side, we conduct a “war game” between an autonomous system and its 

complementary nemesis. The end result of the war games is a collection of scenarios that reveal 

any undesirable behaviors of the system under test. 

The near-term research consists of two phases: A proof-of-concept phase in which a reusable 

framework for Nemesis is developed that consists of a goal-seeking module, a genetic algorithm 

model, and templates for application-specific elements; a calibration phase in which Nemesis is 

applied to a legacy, non-goal seeking system (with a catalog of known test results) to 

demonstrate its utility and effectiveness in comparison to traditional system validation methods. 

The preliminary results demonstrated an increased likely of finding significant system flaws 

early in the test campaign compared to random selection of tests. When augmented with 

engineering expertise to seed the search, we expect to see more earlier and more complete 

identification of flaws compare to the current approaches. 
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Ray Barrington, Draper Laboratory 

If built into the spacecraft command and data architecture, a scripting utility onboard a spacecraft 

can provide a flexible capability to respond to changes in performance and configuration. 

Observed performance is space may be different than tested or may change over time requiring 

compensation or limit updates. Unexpected failures require re-configuration and/or re-direction 

of objectives. A scripting capability allows for automation of re-configuration and re-direction 

that is easy to modify from the ground as operators gain mission experience or objectives 

change. Recently, Draper’s Timeliner sequencer was utilized on the DARPA Orbital Express 

(OE) program to perform the Mission Management function as well as control of subsystem 

functions. For OE, Timeliner was extended to include a monitor that was used to alert the 

Mission Manager of failures and cause appropriate contingency response to execute. This 

Timeliner tool as well as an architecture scared for scripted commanding, proved to be extremely 

useful in responding to changing conditions and unexpected performance during the OE mission. 
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Robyn Lutz, JPL/Caltech & ISU 

Ann Patterson-Hine, NASA Ames Research Center 

Advances in autonomy will allow future NASA missions to be robust to a much wider range of 

anomalies than ever before. Such systems will go beyond traditional fault protection to 

anticipate, identify and handle additional environmental or operational scenarios that might add 

risk. These broader classes of anomalies are called contingencies. 

This poster describes a technique that we have developed to perform early investigation of 

contingencies (anomalous behaviors) and early, integrated modeling of the software system and 

its faults. The technique uses model-based verification to evaluate whether the software design 

provides coverage of the contingency-related software requirements. This tool-supported 

verification of the contingency design assists developers in identifying and remedying design 

gaps and in demonstrating coverage using automatically generated metrics. The tool support 

used was the TEAMS tool from QSI, currently in use at several NASA centers. 

Tool-supported verification of contingency design facilitates fault management by helping 

reduce costly, unexpected, fault-related re-works during testing and by making the design more 

robust to operational contingencies. Model-based development often postpones fault modeling 

until after the functional behavior of the system has been specified. This poster demonstrates the 

advantages of instead performing early investigation of contingencies (anomalous behaviors) and 

early, integrated modeling of the software system and its faults. Software tool support such as 

this will be an asset in handling the scale, increased autonomy and evolving software 

requirements of future, envisioned NASA missions. 

Illustrative examples from three NASA applications (an unpiloted aerial vehicle, MER critical 

pointing software, and a spacecraft electrical power system testbed) show how early 

consideration of potential anomalies helps build in robustness. Previous results from this work 

have been presented in three conferences/workshops and one journal, and will be surveyed and 

updated in this poster. 

Some of this research was carried out at the Jet Propulsion Laboratory, California Institute of 

Technology under a contract with the National Aeronautics and Space Administration, and at 

NASA Ames Research Center, and was funded by NASA’s Office of Safety and Mission 

Assurance Software Assurance Research Program, administered at JPL by ATPO. 
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Guillaume Brat, USRA Research Institute for Advanced Computer Science 

Model-based software can play an important role in future space applications. For example, it 

can help streamline ground operations, or, assist in autonomous rendezvous and docking 

operations. Moreover, model-based software, especially planning and scheduling systems, are 

well suited to finding solutions to recovery problems. For example, planners can be used to 

explore the space of recovery actions for a power subsystem and implement a solution without 

(or with minimal) human intervention. In general, the exploration capabilities of model-based 

systems give them great flexibility. Unfortunately, it also makes them unpredictable to our 

human eyes, both in terms of their execution and their verification, hence, the necessity of 

gaining confidence in the safety of these systems through advanced V&V techniques. 

Planning systems are made of two parts: the domain model describes the domain on which the 

planner can reason and the planning engine performs the reasoning (usually in the form of a 

systematic exploration of the state space induced by the planning goals and the domain model). 

These two parts yield different V&V challenges. The planning engine can be verified in terms of 

its mechanisms, i.e., check that forward propagation is done correctly, check that constraints are 

elaborated correctly, and so on. We believe this can be done using automatic proving techniques. 

The use of these techniques comes with a high cost, but the planning engine only needs to be 

validated once. In some sense, it is a bit similar to validating a compiler. Domain models change 

depending on the applications and therefore require different V&V techniques. 

Domain models capture knowledge specific to a given problem. Each new domain model needs 

to be validated. In mission critical applications, it is necessary to guarantee that the executions of 

plans do not violate certain safety requirements (called flight rules). In previous work (published 

at MBT’07) we have shown how a flight rule can be encoded as an LTL formula F. Verification 

can either be performed on F directly by taking its negation and translating it to a PDDL 

planning goal, or a set of test cases can be generated from F using requirement-based testing 

techniques. This second method of verification is useful when developers are interested in the 

behavior of the domain with respect to some requirement; for instance, a requirement of the form 

“if the rover is moving, then all instruments are stowed” might be true because of the antecedent 

being always false (i.e. the rover never moves in the plan), and the simple verification of the 

property would not provide this information. On the contrary, a test for the proposition “the rover 

is moving” being true would fail, giving more details about the domain. Intuitively, the set of test 

cases is derived by applying a generation algorithm to F, which extends the standard notion of 

MC/DC coverage to requirements written in LTL; each generated test case is then characterized 

by a LTL formula, called the trap formula for the test case. 
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X Appendix F: Request for Workshop Input (RFWI) 
Responses 

In addition to their participation in the workshop itself, participants were asked to provide 

written inputs about the history of fault management on their projects. Participants were provided 

with a questionnaire that covered many of the common challenges in fault management design, 

but were also encouraged to provide extra information they felt was relevant to a discussion of 

the state of the practice. Respondents provided a wealth of insight to their design practices, their 

architectures, and their verification and validation approaches. 

A total of 16 responses were provided, categorized in Table F1. Eight were direct responses to 

the questionnaire. The others were previously published materials that addressed some or all of 

the subject areas covered by the questionnaire: some from specific missions and some general 

discussions of fault management design at an organization. 

Table F1. Information provided in response to Request for Workshop Input. 

Mission Type RFWI Response Other Materials 

Earth Orbiter 2 1 

Planetary Orbiter 2 3 

Lander 1  

Flyby 3 2 

Other General Input  2 

 

The 16 inputs spanned 11 diverse missions, including three Earth orbiters, five planetary orbiters, 

one lander, and two fly-by encounter missions from practitioners in a variety of organizations. 

Some missions provided multiple inputs spanning the different organizations involved or 

additional previous papers written on their FM systems. In some cases, respondents also 

provided insight into practices in other branches of their organization that did not participate in 

the workshop. While the technical challenges faced by projects were diverse, approaches to fault 

management and the programmatic challenges of implementing fault management systems were 

similar in many ways: high-level requirements followed certain themes and the architectures that 

rose out of those requirements share many similar concepts. 

Approaches, lessons learned, and best practices gleaned from the RFWI responses have been 

incorporated into the results of the workshop presented in the Findings and Recommendations 

sections of this document. 

 

 


